MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij2lem4 Unicode version

Theorem ackbij2lem4 7884
Description: Lemma for ackbij2 7885. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypotheses
Ref Expression
ackbij.f  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
ackbij.g  |-  G  =  ( x  e.  _V  |->  ( y  e.  ~P dom  x  |->  ( F `  ( x " y
) ) ) )
Assertion
Ref Expression
ackbij2lem4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  C_  A )  ->  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  A )
)
Distinct variable groups:    x, F, y    x, G, y    x, A, y    x, B, y

Proof of Theorem ackbij2lem4
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5541 . . 3  |-  ( a  =  B  ->  ( rec ( G ,  (/) ) `  a )  =  ( rec ( G ,  (/) ) `  B ) )
21sseq2d 3219 . 2  |-  ( a  =  B  ->  (
( rec ( G ,  (/) ) `  B
)  C_  ( rec ( G ,  (/) ) `  a )  <->  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  B )
) )
3 fveq2 5541 . . 3  |-  ( a  =  b  ->  ( rec ( G ,  (/) ) `  a )  =  ( rec ( G ,  (/) ) `  b ) )
43sseq2d 3219 . 2  |-  ( a  =  b  ->  (
( rec ( G ,  (/) ) `  B
)  C_  ( rec ( G ,  (/) ) `  a )  <->  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  b )
) )
5 fveq2 5541 . . 3  |-  ( a  =  suc  b  -> 
( rec ( G ,  (/) ) `  a
)  =  ( rec ( G ,  (/) ) `  suc  b ) )
65sseq2d 3219 . 2  |-  ( a  =  suc  b  -> 
( ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  a )  <->  ( rec ( G ,  (/) ) `  B ) 
C_  ( rec ( G ,  (/) ) `  suc  b ) ) )
7 fveq2 5541 . . 3  |-  ( a  =  A  ->  ( rec ( G ,  (/) ) `  a )  =  ( rec ( G ,  (/) ) `  A ) )
87sseq2d 3219 . 2  |-  ( a  =  A  ->  (
( rec ( G ,  (/) ) `  B
)  C_  ( rec ( G ,  (/) ) `  a )  <->  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  A )
) )
9 ssid 3210 . . 3  |-  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  B
)
109a1i 10 . 2  |-  ( B  e.  om  ->  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  B
) )
11 ackbij.f . . . . 5  |-  F  =  ( x  e.  ( ~P om  i^i  Fin )  |->  ( card `  U_ y  e.  x  ( {
y }  X.  ~P y ) ) )
12 ackbij.g . . . . 5  |-  G  =  ( x  e.  _V  |->  ( y  e.  ~P dom  x  |->  ( F `  ( x " y
) ) ) )
1311, 12ackbij2lem3 7883 . . . 4  |-  ( b  e.  om  ->  ( rec ( G ,  (/) ) `  b )  C_  ( rec ( G ,  (/) ) `  suc  b ) )
1413ad2antrr 706 . . 3  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  B  C_  b )  ->  ( rec ( G ,  (/) ) `  b )  C_  ( rec ( G ,  (/) ) `  suc  b ) )
15 sstr2 3199 . . 3  |-  ( ( rec ( G ,  (/) ) `  B ) 
C_  ( rec ( G ,  (/) ) `  b )  ->  (
( rec ( G ,  (/) ) `  b
)  C_  ( rec ( G ,  (/) ) `  suc  b )  ->  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  suc  b ) ) )
1614, 15syl5com 26 . 2  |-  ( ( ( b  e.  om  /\  B  e.  om )  /\  B  C_  b )  ->  ( ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  b
)  ->  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  suc  b ) ) )
172, 4, 6, 8, 10, 16findsg 4699 1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  B  C_  A )  ->  ( rec ( G ,  (/) ) `  B )  C_  ( rec ( G ,  (/) ) `  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   {csn 3653   U_ciun 3921    e. cmpt 4093   suc csuc 4410   omcom 4672    X. cxp 4703   dom cdm 4705   "cima 4708   ` cfv 5271   reccrdg 6438   Fincfn 6879   cardccrd 7584
This theorem is referenced by:  ackbij2  7885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-r1 7452  df-card 7588  df-cda 7810
  Copyright terms: Public domain W3C validator