MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acneq Unicode version

Theorem acneq 7670
Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acneq  |-  ( A  =  C  -> AC  A  = AC  C )

Proof of Theorem acneq
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2343 . . . 4  |-  ( A  =  C  ->  ( A  e.  _V  <->  C  e.  _V ) )
2 oveq2 5866 . . . . 5  |-  ( A  =  C  ->  (
( ~P x  \  { (/) } )  ^m  A )  =  ( ( ~P x  \  { (/) } )  ^m  C ) )
3 raleq 2736 . . . . . 6  |-  ( A  =  C  ->  ( A. y  e.  A  ( g `  y
)  e.  ( f `
 y )  <->  A. y  e.  C  ( g `  y )  e.  ( f `  y ) ) )
43exbidv 1612 . . . . 5  |-  ( A  =  C  ->  ( E. g A. y  e.  A  ( g `  y )  e.  ( f `  y )  <->  E. g A. y  e.  C  ( g `  y )  e.  ( f `  y ) ) )
52, 4raleqbidv 2748 . . . 4  |-  ( A  =  C  ->  ( A. f  e.  (
( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y )  <->  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) )
61, 5anbi12d 691 . . 3  |-  ( A  =  C  ->  (
( A  e.  _V  /\ 
A. f  e.  ( ( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) )  <-> 
( C  e.  _V  /\ 
A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) ) )
76abbidv 2397 . 2  |-  ( A  =  C  ->  { x  |  ( A  e. 
_V  /\  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  A ) E. g A. y  e.  A  ( g `  y
)  e.  ( f `
 y ) ) }  =  { x  |  ( C  e. 
_V  /\  A. f  e.  ( ( ~P x  \  { (/) } )  ^m  C ) E. g A. y  e.  C  ( g `  y
)  e.  ( f `
 y ) ) } )
8 df-acn 7575 . 2  |- AC  A  =  { x  |  ( A  e.  _V  /\  A. f  e.  ( ( ~P x  \  { (/)
} )  ^m  A
) E. g A. y  e.  A  (
g `  y )  e.  ( f `  y
) ) }
9 df-acn 7575 . 2  |- AC  C  =  { x  |  ( C  e.  _V  /\  A. f  e.  ( ( ~P x  \  { (/)
} )  ^m  C
) E. g A. y  e.  C  (
g `  y )  e.  ( f `  y
) ) }
107, 8, 93eqtr4g 2340 1  |-  ( A  =  C  -> AC  A  = AC  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   _Vcvv 2788    \ cdif 3149   (/)c0 3455   ~Pcpw 3625   {csn 3640   ` cfv 5255  (class class class)co 5858    ^m cmap 6772  AC wacn 7571
This theorem is referenced by:  acndom  7678  dfacacn  7767  dfac13  7768
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-acn 7575
  Copyright terms: Public domain W3C validator