MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Unicode version

Theorem acnlem 7765
Description: Construct a mapping satisfying the consequent of isacn 7761. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Distinct variable groups:    f, g, x, A    B, g
Allowed substitution hints:    B( x, f)    V( x, f, g)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 5634 . . . . . 6  |-  ( f `
 x )  C_  U.
ran  f
2 simpr 447 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  ( f `  x ) )
31, 2sseldi 3254 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  U. ran  f
)
43ralimiaa 2693 . . . 4  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  B  e.  U.
ran  f )
5 eqid 2358 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
65fmpt 5764 . . . 4  |-  ( A. x  e.  A  B  e.  U. ran  f  <->  ( x  e.  A  |->  B ) : A --> U. ran  f )
74, 6sylib 188 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  ( x  e.  A  |->  B ) : A --> U. ran  f )
8 id 19 . . 3  |-  ( A  e.  V  ->  A  e.  V )
9 vex 2867 . . . . . 6  |-  f  e. 
_V
109rnex 5024 . . . . 5  |-  ran  f  e.  _V
1110uniex 4598 . . . 4  |-  U. ran  f  e.  _V
12 fex2 5484 . . . 4  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V  /\  U. ran  f  e.  _V )  ->  ( x  e.  A  |->  B )  e.  _V )
1311, 12mp3an3 1266 . . 3  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V )  ->  (
x  e.  A  |->  B )  e.  _V )
147, 8, 13syl2anr 464 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  (
x  e.  A  |->  B )  e.  _V )
155fvmpt2 5691 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
1615, 2eqeltrd 2432 . . . 4  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1716ralimiaa 2693 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1817adantl 452 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
19 nfmpt1 4190 . . . . 5  |-  F/_ x
( x  e.  A  |->  B )
2019nfeq2 2505 . . . 4  |-  F/ x  g  =  ( x  e.  A  |->  B )
21 fveq1 5607 . . . . 5  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( g `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
2221eleq1d 2424 . . . 4  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( ( g `  x )  e.  ( f `  x )  <-> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2320, 22ralbid 2637 . . 3  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( A. x  e.  A  ( g `  x )  e.  ( f `  x )  <->  A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2423spcegv 2945 . 2  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ( A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) ) )
2514, 18, 24sylc 56 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1541    = wceq 1642    e. wcel 1710   A.wral 2619   _Vcvv 2864   U.cuni 3908    e. cmpt 4158   ran crn 4772   -->wf 5333   ` cfv 5337
This theorem is referenced by:  numacn  7766  acndom  7768  acndom2  7771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-fv 5345
  Copyright terms: Public domain W3C validator