MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnlem Unicode version

Theorem acnlem 7675
Description: Construct a mapping satisfying the consequent of isacn 7671. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnlem  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Distinct variable groups:    f, g, x, A    B, g
Allowed substitution hints:    B( x, f)    V( x, f, g)

Proof of Theorem acnlem
StepHypRef Expression
1 fvssunirn 5551 . . . . . 6  |-  ( f `
 x )  C_  U.
ran  f
2 simpr 447 . . . . . 6  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  ( f `  x ) )
31, 2sseldi 3178 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  ->  B  e.  U. ran  f
)
43ralimiaa 2617 . . . 4  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  B  e.  U.
ran  f )
5 eqid 2283 . . . . 5  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
65fmpt 5681 . . . 4  |-  ( A. x  e.  A  B  e.  U. ran  f  <->  ( x  e.  A  |->  B ) : A --> U. ran  f )
74, 6sylib 188 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  ( x  e.  A  |->  B ) : A --> U. ran  f )
8 id 19 . . 3  |-  ( A  e.  V  ->  A  e.  V )
9 vex 2791 . . . . . 6  |-  f  e. 
_V
109rnex 4942 . . . . 5  |-  ran  f  e.  _V
1110uniex 4516 . . . 4  |-  U. ran  f  e.  _V
12 fex2 5401 . . . 4  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V  /\  U. ran  f  e.  _V )  ->  ( x  e.  A  |->  B )  e.  _V )
1311, 12mp3an3 1266 . . 3  |-  ( ( ( x  e.  A  |->  B ) : A --> U. ran  f  /\  A  e.  V )  ->  (
x  e.  A  |->  B )  e.  _V )
147, 8, 13syl2anr 464 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  (
x  e.  A  |->  B )  e.  _V )
155fvmpt2 5608 . . . . 5  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  =  B )
1615, 2eqeltrd 2357 . . . 4  |-  ( ( x  e.  A  /\  B  e.  ( f `  x ) )  -> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1716ralimiaa 2617 . . 3  |-  ( A. x  e.  A  B  e.  ( f `  x
)  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
1817adantl 452 . 2  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  A. x  e.  A  ( (
x  e.  A  |->  B ) `  x )  e.  ( f `  x ) )
19 nfmpt1 4109 . . . . 5  |-  F/_ x
( x  e.  A  |->  B )
2019nfeq2 2430 . . . 4  |-  F/ x  g  =  ( x  e.  A  |->  B )
21 fveq1 5524 . . . . 5  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( g `  x
)  =  ( ( x  e.  A  |->  B ) `  x ) )
2221eleq1d 2349 . . . 4  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( ( g `  x )  e.  ( f `  x )  <-> 
( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2320, 22ralbid 2561 . . 3  |-  ( g  =  ( x  e.  A  |->  B )  -> 
( A. x  e.  A  ( g `  x )  e.  ( f `  x )  <->  A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x ) ) )
2423spcegv 2869 . 2  |-  ( ( x  e.  A  |->  B )  e.  _V  ->  ( A. x  e.  A  ( ( x  e.  A  |->  B ) `  x )  e.  ( f `  x )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) ) )
2514, 18, 24sylc 56 1  |-  ( ( A  e.  V  /\  A. x  e.  A  B  e.  ( f `  x
) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   U.cuni 3827    e. cmpt 4077   ran crn 4690   -->wf 5251   ` cfv 5255
This theorem is referenced by:  numacn  7676  acndom  7678  acndom2  7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
  Copyright terms: Public domain W3C validator