MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acnnum Unicode version

Theorem acnnum 7766
Description: A set  X which has choice sequences on it of length  ~P X is well-orderable (and hence has choice sequences of every length). (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
acnnum  |-  ( X  e. AC  ~P X  <->  X  e.  dom  card )

Proof of Theorem acnnum
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4273 . . . . . . 7  |-  ( X  e. AC  ~P X  ->  ~P X  e.  _V )
2 difss 3379 . . . . . . 7  |-  ( ~P X  \  { (/) } )  C_  ~P X
3 ssdomg 6992 . . . . . . 7  |-  ( ~P X  e.  _V  ->  ( ( ~P X  \  { (/) } )  C_  ~P X  ->  ( ~P X  \  { (/) } )  ~<_  ~P X ) )
41, 2, 3ee10 1376 . . . . . 6  |-  ( X  e. AC  ~P X  ->  ( ~P X  \  { (/) } )  ~<_  ~P X )
5 acndom 7765 . . . . . 6  |-  ( ( ~P X  \  { (/)
} )  ~<_  ~P X  ->  ( X  e. AC  ~P X  ->  X  e. AC  ( ~P X  \  { (/) } ) ) )
64, 5mpcom 32 . . . . 5  |-  ( X  e. AC  ~P X  ->  X  e. AC  ( ~P X  \  { (/) } ) )
7 eldifsn 3825 . . . . . . 7  |-  ( x  e.  ( ~P X  \  { (/) } )  <->  ( x  e.  ~P X  /\  x  =/=  (/) ) )
8 elpwi 3709 . . . . . . . 8  |-  ( x  e.  ~P X  ->  x  C_  X )
98anim1i 551 . . . . . . 7  |-  ( ( x  e.  ~P X  /\  x  =/=  (/) )  -> 
( x  C_  X  /\  x  =/=  (/) ) )
107, 9sylbi 187 . . . . . 6  |-  ( x  e.  ( ~P X  \  { (/) } )  -> 
( x  C_  X  /\  x  =/=  (/) ) )
1110rgen 2684 . . . . 5  |-  A. x  e.  ( ~P X  \  { (/) } ) ( x  C_  X  /\  x  =/=  (/) )
12 acni2 7760 . . . . 5  |-  ( ( X  e. AC  ( ~P X  \  { (/) } )  /\  A. x  e.  ( ~P X  \  { (/) } ) ( x  C_  X  /\  x  =/=  (/) ) )  ->  E. f ( f : ( ~P X  \  { (/) } ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x )  e.  x ) )
136, 11, 12sylancl 643 . . . 4  |-  ( X  e. AC  ~P X  ->  E. f
( f : ( ~P X  \  { (/)
} ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x )  e.  x
) )
14 simpr 447 . . . . . 6  |-  ( ( f : ( ~P X  \  { (/) } ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x
)  e.  x )  ->  A. x  e.  ( ~P X  \  { (/)
} ) ( f `
 x )  e.  x )
157imbi1i 315 . . . . . . . 8  |-  ( ( x  e.  ( ~P X  \  { (/) } )  ->  ( f `  x )  e.  x
)  <->  ( ( x  e.  ~P X  /\  x  =/=  (/) )  ->  (
f `  x )  e.  x ) )
16 impexp 433 . . . . . . . 8  |-  ( ( ( x  e.  ~P X  /\  x  =/=  (/) )  -> 
( f `  x
)  e.  x )  <-> 
( x  e.  ~P X  ->  ( x  =/=  (/)  ->  ( f `  x )  e.  x
) ) )
1715, 16bitri 240 . . . . . . 7  |-  ( ( x  e.  ( ~P X  \  { (/) } )  ->  ( f `  x )  e.  x
)  <->  ( x  e. 
~P X  ->  (
x  =/=  (/)  ->  (
f `  x )  e.  x ) ) )
1817ralbii2 2647 . . . . . 6  |-  ( A. x  e.  ( ~P X  \  { (/) } ) ( f `  x
)  e.  x  <->  A. x  e.  ~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
1914, 18sylib 188 . . . . 5  |-  ( ( f : ( ~P X  \  { (/) } ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x
)  e.  x )  ->  A. x  e.  ~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
2019eximi 1576 . . . 4  |-  ( E. f ( f : ( ~P X  \  { (/) } ) --> X  /\  A. x  e.  ( ~P X  \  { (/) } ) ( f `  x )  e.  x )  ->  E. f A. x  e. 
~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
2113, 20syl 15 . . 3  |-  ( X  e. AC  ~P X  ->  E. f A. x  e.  ~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
) )
22 dfac8a 7744 . . 3  |-  ( X  e. AC  ~P X  ->  ( E. f A. x  e. 
~P  X ( x  =/=  (/)  ->  ( f `  x )  e.  x
)  ->  X  e.  dom  card ) )
2321, 22mpd 14 . 2  |-  ( X  e. AC  ~P X  ->  X  e.  dom  card )
24 pwexg 4273 . . 3  |-  ( X  e.  dom  card  ->  ~P X  e.  _V )
25 numacn 7763 . . 3  |-  ( ~P X  e.  _V  ->  ( X  e.  dom  card  ->  X  e. AC  ~P X ) )
2624, 25mpcom 32 . 2  |-  ( X  e.  dom  card  ->  X  e. AC  ~P X )
2723, 26impbii 180 1  |-  ( X  e. AC  ~P X  <->  X  e.  dom  card )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1541    e. wcel 1710    =/= wne 2521   A.wral 2619   _Vcvv 2864    \ cdif 3225    C_ wss 3228   (/)c0 3531   ~Pcpw 3701   {csn 3716   class class class wbr 4102   dom cdm 4768   -->wf 5330   ` cfv 5334    ~<_ cdom 6946   cardccrd 7655  AC wacn 7658
This theorem is referenced by:  dfac13  7855
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-1o 6563  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-fin 6952  df-card 7659  df-acn 7662
  Copyright terms: Public domain W3C validator