MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdrscl Structured version   Unicode version

Theorem acsdrscl 14596
Description: In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f  |-  F  =  (mrCls `  C )
Assertion
Ref Expression
acsdrscl  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X  /\  (toInc `  Y )  e. Dirset )  ->  ( F `  U. Y )  =  U. ( F " Y ) )

Proof of Theorem acsdrscl
Dummy variables  s 
t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5757 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  X  e.  dom ACS )
2 pwexg 4383 . . . . 5  |-  ( X  e.  dom ACS  ->  ~P X  e.  _V )
3 elpw2g 4363 . . . . 5  |-  ( ~P X  e.  _V  ->  ( Y  e.  ~P ~P X 
<->  Y  C_  ~P X
) )
41, 2, 33syl 19 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  ( Y  e.  ~P ~P X  <->  Y  C_  ~P X ) )
54biimpar 472 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  ->  Y  e.  ~P ~P X )
6 isacs3lem 14592 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
7 acsdrscl.f . . . . . . 7  |-  F  =  (mrCls `  C )
87isacs4lem 14594 . . . . . 6  |-  ( ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C
( (toInc `  s
)  e. Dirset  ->  U. s  e.  C ) )  -> 
( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) ) ) )
96, 8syl 16 . . . . 5  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) ) )
109simprd 450 . . . 4  |-  ( C  e.  (ACS `  X
)  ->  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t )  =  U. ( F " t ) ) )
1110adantr 452 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  ->  A. t  e.  ~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) )
12 fveq2 5728 . . . . . 6  |-  ( t  =  Y  ->  (toInc `  t )  =  (toInc `  Y ) )
1312eleq1d 2502 . . . . 5  |-  ( t  =  Y  ->  (
(toInc `  t )  e. Dirset  <-> 
(toInc `  Y )  e. Dirset ) )
14 unieq 4024 . . . . . . 7  |-  ( t  =  Y  ->  U. t  =  U. Y )
1514fveq2d 5732 . . . . . 6  |-  ( t  =  Y  ->  ( F `  U. t )  =  ( F `  U. Y ) )
16 imaeq2 5199 . . . . . . 7  |-  ( t  =  Y  ->  ( F " t )  =  ( F " Y
) )
1716unieqd 4026 . . . . . 6  |-  ( t  =  Y  ->  U. ( F " t )  = 
U. ( F " Y ) )
1815, 17eqeq12d 2450 . . . . 5  |-  ( t  =  Y  ->  (
( F `  U. t )  =  U. ( F " t )  <-> 
( F `  U. Y )  =  U. ( F " Y ) ) )
1913, 18imbi12d 312 . . . 4  |-  ( t  =  Y  ->  (
( (toInc `  t
)  e. Dirset  ->  ( F `
 U. t )  =  U. ( F
" t ) )  <-> 
( (toInc `  Y
)  e. Dirset  ->  ( F `
 U. Y )  =  U. ( F
" Y ) ) ) )
2019rspcva 3050 . . 3  |-  ( ( Y  e.  ~P ~P X  /\  A. t  e. 
~P  ~P X ( (toInc `  t )  e. Dirset  ->  ( F `  U. t
)  =  U. ( F " t ) ) )  ->  ( (toInc `  Y )  e. Dirset  ->  ( F `  U. Y
)  =  U. ( F " Y ) ) )
215, 11, 20syl2anc 643 . 2  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X )  -> 
( (toInc `  Y
)  e. Dirset  ->  ( F `
 U. Y )  =  U. ( F
" Y ) ) )
22213impia 1150 1  |-  ( ( C  e.  (ACS `  X )  /\  Y  C_ 
~P X  /\  (toInc `  Y )  e. Dirset )  ->  ( F `  U. Y )  =  U. ( F " Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    C_ wss 3320   ~Pcpw 3799   U.cuni 4015   dom cdm 4878   "cima 4881   ` cfv 5454  Moorecmre 13807  mrClscmrc 13808  ACScacs 13810  Dirsetcdrs 14384  toInccipo 14577
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-fz 11044  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-tset 13548  df-ple 13549  df-ocomp 13550  df-mre 13811  df-mrc 13812  df-acs 13814  df-preset 14385  df-drs 14386  df-poset 14403  df-ipo 14578
  Copyright terms: Public domain W3C validator