MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiindd Unicode version

Theorem acsfiindd 14280
Description: In an algebraic closure system, a set is independent if and only if all its finite subsets are independent. Part of Proposition 4.1.3 in [FaureFrolicher] p. 83. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsfiindd.1  |-  ( ph  ->  A  e.  (ACS `  X ) )
acsfiindd.2  |-  N  =  (mrCls `  A )
acsfiindd.3  |-  I  =  (mrInd `  A )
acsfiindd.4  |-  ( ph  ->  S  C_  X )
Assertion
Ref Expression
acsfiindd  |-  ( ph  ->  ( S  e.  I  <->  ( ~P S  i^i  Fin )  C_  I ) )

Proof of Theorem acsfiindd
Dummy variables  x  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsfiindd.1 . . . . . . 7  |-  ( ph  ->  A  e.  (ACS `  X ) )
21acsmred 13558 . . . . . 6  |-  ( ph  ->  A  e.  (Moore `  X ) )
32ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  A  e.  (Moore `  X )
)
4 acsfiindd.2 . . . . 5  |-  N  =  (mrCls `  A )
5 acsfiindd.3 . . . . 5  |-  I  =  (mrInd `  A )
6 simplr 731 . . . . 5  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  S  e.  I )
7 inss1 3389 . . . . . . 7  |-  ( ~P S  i^i  Fin )  C_ 
~P S
8 simpr 447 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  s  e.  ( ~P S  i^i  Fin ) )
97, 8sseldi 3178 . . . . . 6  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  s  e.  ~P S )
109elpwid 3634 . . . . 5  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  s  C_  S )
113, 4, 5, 6, 10mrissmrid 13543 . . . 4  |-  ( ( ( ph  /\  S  e.  I )  /\  s  e.  ( ~P S  i^i  Fin ) )  ->  s  e.  I )
1211ralrimiva 2626 . . 3  |-  ( (
ph  /\  S  e.  I )  ->  A. s  e.  ( ~P S  i^i  Fin ) s  e.  I
)
13 dfss3 3170 . . 3  |-  ( ( ~P S  i^i  Fin )  C_  I  <->  A. s  e.  ( ~P S  i^i  Fin ) s  e.  I
)
1412, 13sylibr 203 . 2  |-  ( (
ph  /\  S  e.  I )  ->  ( ~P S  i^i  Fin )  C_  I )
152adantr 451 . . 3  |-  ( (
ph  /\  ( ~P S  i^i  Fin )  C_  I )  ->  A  e.  (Moore `  X )
)
16 acsfiindd.4 . . . 4  |-  ( ph  ->  S  C_  X )
1716adantr 451 . . 3  |-  ( (
ph  /\  ( ~P S  i^i  Fin )  C_  I )  ->  S  C_  X )
18 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )
19 elfpw 7157 . . . . . . . . . . . . . . 15  |-  ( t  e.  ( ~P ( S  \  { x }
)  i^i  Fin )  <->  ( t  C_  ( S  \  { x } )  /\  t  e.  Fin ) )
2018, 19sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( t  C_  ( S  \  {
x } )  /\  t  e.  Fin )
)
2120simpld 445 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  t  C_  ( S  \  { x } ) )
2221difss2d 3306 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  t  C_  S )
23 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  x  e.  S )
2423snssd 3760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  { x }  C_  S )
2522, 24unssd 3351 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( t  u.  { x } ) 
C_  S )
2620simprd 449 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  t  e.  Fin )
27 snfi 6941 . . . . . . . . . . . 12  |-  { x }  e.  Fin
28 unfi 7124 . . . . . . . . . . . 12  |-  ( ( t  e.  Fin  /\  { x }  e.  Fin )  ->  ( t  u. 
{ x } )  e.  Fin )
2926, 27, 28sylancl 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( t  u.  { x } )  e.  Fin )
30 elfpw 7157 . . . . . . . . . . 11  |-  ( ( t  u.  { x } )  e.  ( ~P S  i^i  Fin ) 
<->  ( ( t  u. 
{ x } ) 
C_  S  /\  (
t  u.  { x } )  e.  Fin ) )
3125, 29, 30sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( t  u.  { x } )  e.  ( ~P S  i^i  Fin ) )
322ad4antr 712 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  A  e.  (Moore `  X ) )
33 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  s  e.  I )
34 simpllr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  x  e.  S )
35 snidg 3665 . . . . . . . . . . . . . . . 16  |-  ( x  e.  S  ->  x  e.  { x } )
36 elun2 3343 . . . . . . . . . . . . . . . 16  |-  ( x  e.  { x }  ->  x  e.  ( t  u.  { x }
) )
3734, 35, 363syl 18 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  x  e.  ( t  u.  {
x } ) )
38 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  s  =  ( t  u.  {
x } ) )
3937, 38eleqtrrd 2360 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  x  e.  s )
4039adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  x  e.  s )
414, 5, 32, 33, 40ismri2dad 13539 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  -.  x  e.  ( N `  ( s 
\  { x }
) ) )
422ad3antrrr 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  A  e.  (Moore `  X ) )
4321adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  t  C_  ( S  \  { x } ) )
44 neldifsnd 3752 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  -.  x  e.  ( S  \  {
x } ) )
4543, 44ssneldd 3183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  -.  x  e.  t )
46 difsneq 3757 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  e.  t  <->  ( t  \  { x } )  =  t )
4745, 46sylib 188 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( t  \  { x } )  =  t )
48 ssun1 3338 . . . . . . . . . . . . . . . . . 18  |-  t  C_  ( t  u.  {
x } )
4948, 38syl5sseqr 3227 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  t  C_  s )
5049ssdifd 3312 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( t  \  { x } ) 
C_  ( s  \  { x } ) )
5147, 50eqsstr3d 3213 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  t  C_  ( s  \  {
x } ) )
5225adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( t  u.  { x } ) 
C_  S )
5316ad3antrrr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  S  C_  X
)
5452, 53sstrd 3189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( t  u.  { x } ) 
C_  X )
5538, 54eqsstrd 3212 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  s  C_  X )
5655ssdifssd 3314 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( s  \  { x } ) 
C_  X )
5742, 4, 51, 56mrcssd 13526 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( N `  t )  C_  ( N `  ( s  \  { x } ) ) )
5857sseld 3179 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( x  e.  ( N `  t
)  ->  x  e.  ( N `  ( s 
\  { x }
) ) ) )
5958adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  ( x  e.  ( N `  t )  ->  x  e.  ( N `  ( s 
\  { x }
) ) ) )
6041, 59mtod 168 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) )  /\  s  =  ( t  u.  { x } ) )  /\  s  e.  I )  ->  -.  x  e.  ( N `  t ) )
6160ex 423 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin ) )  /\  s  =  ( t  u.  { x } ) )  ->  ( s  e.  I  ->  -.  x  e.  ( N `  t
) ) )
6231, 61rspcimdv 2885 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( A. s  e.  ( ~P S  i^i  Fin ) s  e.  I  ->  -.  x  e.  ( N `  t ) ) )
6313, 62syl5bi 208 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  S )  /\  t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
)  ->  ( ( ~P S  i^i  Fin )  C_  I  ->  -.  x  e.  ( N `  t
) ) )
6463impancom 427 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  S )  /\  ( ~P S  i^i  Fin )  C_  I )  ->  (
t  e.  ( ~P ( S  \  {
x } )  i^i 
Fin )  ->  -.  x  e.  ( N `  t ) ) )
6564ralrimiv 2625 . . . . . 6  |-  ( ( ( ph  /\  x  e.  S )  /\  ( ~P S  i^i  Fin )  C_  I )  ->  A. t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )  -.  x  e.  ( N `  t )
)
6616ssdifssd 3314 . . . . . . . . . 10  |-  ( ph  ->  ( S  \  {
x } )  C_  X )
671, 4, 66acsficl2d 14279 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( N `  ( S 
\  { x }
) )  <->  E. t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
x  e.  ( N `
 t ) ) )
6867notbid 285 . . . . . . . 8  |-  ( ph  ->  ( -.  x  e.  ( N `  ( S  \  { x }
) )  <->  -.  E. t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )
x  e.  ( N `
 t ) ) )
69 ralnex 2553 . . . . . . . 8  |-  ( A. t  e.  ( ~P ( S  \  { x } )  i^i  Fin )  -.  x  e.  ( N `  t )  <->  -.  E. t  e.  ( ~P ( S  \  { x } )  i^i  Fin ) x  e.  ( N `  t ) )
7068, 69syl6bbr 254 . . . . . . 7  |-  ( ph  ->  ( -.  x  e.  ( N `  ( S  \  { x }
) )  <->  A. t  e.  ( ~P ( S 
\  { x }
)  i^i  Fin )  -.  x  e.  ( N `  t )
) )
7170ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  e.  S )  /\  ( ~P S  i^i  Fin )  C_  I )  ->  ( -.  x  e.  ( N `  ( S  \  { x } ) )  <->  A. t  e.  ( ~P ( S  \  { x } )  i^i  Fin )  -.  x  e.  ( N `
 t ) ) )
7265, 71mpbird 223 . . . . 5  |-  ( ( ( ph  /\  x  e.  S )  /\  ( ~P S  i^i  Fin )  C_  I )  ->  -.  x  e.  ( N `  ( S  \  {
x } ) ) )
7372an32s 779 . . . 4  |-  ( ( ( ph  /\  ( ~P S  i^i  Fin )  C_  I )  /\  x  e.  S )  ->  -.  x  e.  ( N `  ( S  \  {
x } ) ) )
7473ralrimiva 2626 . . 3  |-  ( (
ph  /\  ( ~P S  i^i  Fin )  C_  I )  ->  A. x  e.  S  -.  x  e.  ( N `  ( S  \  { x }
) ) )
754, 5, 15, 17, 74ismri2dd 13536 . 2  |-  ( (
ph  /\  ( ~P S  i^i  Fin )  C_  I )  ->  S  e.  I )
7614, 75impbida 805 1  |-  ( ph  ->  ( S  e.  I  <->  ( ~P S  i^i  Fin )  C_  I ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   ` cfv 5255   Fincfn 6863  Moorecmre 13484  mrClscmrc 13485  mrIndcmri 13486  ACScacs 13487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-tset 13227  df-ple 13228  df-ocomp 13229  df-mre 13488  df-mrc 13489  df-mri 13490  df-acs 13491  df-preset 14062  df-drs 14063  df-poset 14080  df-ipo 14255
  Copyright terms: Public domain W3C validator