Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acsfn1p Unicode version

Theorem acsfn1p 27507
Description: Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
acsfn1p  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  (
a  i^i  Y ) E  e.  a }  e.  (ACS `  X )
)
Distinct variable groups:    a, b, V    E, a    X, a, b    Y, a, b
Allowed substitution hint:    E( b)

Proof of Theorem acsfn1p
StepHypRef Expression
1 riinrab 3977 . . 3  |-  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  ( X  i^i  Y
) ( { b }  C_  a  ->  E  e.  a ) }
2 elpwi 3633 . . . . . . . 8  |-  ( a  e.  ~P X  -> 
a  C_  X )
3 ssrin 3394 . . . . . . . 8  |-  ( a 
C_  X  ->  (
a  i^i  Y )  C_  ( X  i^i  Y
) )
42, 3syl 15 . . . . . . 7  |-  ( a  e.  ~P X  -> 
( a  i^i  Y
)  C_  ( X  i^i  Y ) )
54adantl 452 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  (
a  i^i  Y )  C_  ( X  i^i  Y
) )
6 ralss 3239 . . . . . 6  |-  ( ( a  i^i  Y ) 
C_  ( X  i^i  Y )  ->  ( A. b  e.  ( a  i^i  Y ) E  e.  a  <->  A. b  e.  ( X  i^i  Y ) ( b  e.  ( a  i^i  Y )  ->  E  e.  a ) ) )
75, 6syl 15 . . . . 5  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  ( A. b  e.  (
a  i^i  Y ) E  e.  a  <->  A. b  e.  ( X  i^i  Y
) ( b  e.  ( a  i^i  Y
)  ->  E  e.  a ) ) )
8 inss2 3390 . . . . . . . . . 10  |-  ( X  i^i  Y )  C_  Y
98sseli 3176 . . . . . . . . 9  |-  ( b  e.  ( X  i^i  Y )  ->  b  e.  Y )
109biantrud 493 . . . . . . . 8  |-  ( b  e.  ( X  i^i  Y )  ->  ( b  e.  a  <->  ( b  e.  a  /\  b  e.  Y ) ) )
11 vex 2791 . . . . . . . . . 10  |-  b  e. 
_V
1211snss 3748 . . . . . . . . 9  |-  ( b  e.  a  <->  { b }  C_  a )
1312bicomi 193 . . . . . . . 8  |-  ( { b }  C_  a  <->  b  e.  a )
14 elin 3358 . . . . . . . 8  |-  ( b  e.  ( a  i^i 
Y )  <->  ( b  e.  a  /\  b  e.  Y ) )
1510, 13, 143bitr4g 279 . . . . . . 7  |-  ( b  e.  ( X  i^i  Y )  ->  ( {
b }  C_  a  <->  b  e.  ( a  i^i 
Y ) ) )
1615imbi1d 308 . . . . . 6  |-  ( b  e.  ( X  i^i  Y )  ->  ( ( { b }  C_  a  ->  E  e.  a )  <->  ( b  e.  ( a  i^i  Y
)  ->  E  e.  a ) ) )
1716ralbiia 2575 . . . . 5  |-  ( A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a )  <->  A. b  e.  ( X  i^i  Y ) ( b  e.  ( a  i^i  Y )  ->  E  e.  a )
)
187, 17syl6rbbr 255 . . . 4  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  ( A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a )  <->  A. b  e.  ( a  i^i  Y ) E  e.  a ) )
1918rabbidva 2779 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a ) }  =  {
a  e.  ~P X  |  A. b  e.  ( a  i^i  Y ) E  e.  a } )
201, 19syl5eq 2327 . 2  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  ( a  i^i  Y
) E  e.  a } )
21 mreacs 13560 . . . 4  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
2221adantr 451 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
23 ssralv 3237 . . . . . 6  |-  ( ( X  i^i  Y ) 
C_  Y  ->  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y ) E  e.  X ) )
248, 23ax-mp 8 . . . . 5  |-  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y
) E  e.  X
)
25 simpll 730 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  X  e.  V )
26 simpr 447 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  E  e.  X )
27 inss1 3389 . . . . . . . . . . 11  |-  ( X  i^i  Y )  C_  X
2827sseli 3176 . . . . . . . . . 10  |-  ( b  e.  ( X  i^i  Y )  ->  b  e.  X )
2928ad2antlr 707 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  b  e.  X )
3029snssd 3760 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { b }  C_  X )
31 snfi 6941 . . . . . . . . 9  |-  { b }  e.  Fin
3231a1i 10 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { b }  e.  Fin )
33 acsfn 13561 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  E  e.  X
)  /\  ( {
b }  C_  X  /\  { b }  e.  Fin ) )  ->  { a  e.  ~P X  | 
( { b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) )
3425, 26, 30, 32, 33syl22anc 1183 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
3534ex 423 . . . . . 6  |-  ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  -> 
( E  e.  X  ->  { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) ) )
3635ralimdva 2621 . . . . 5  |-  ( X  e.  V  ->  ( A. b  e.  ( X  i^i  Y ) E  e.  X  ->  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) ) )
3724, 36syl5 28 . . . 4  |-  ( X  e.  V  ->  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y ) { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) ) )
3837imp 418 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
39 mreriincl 13500 . . 3  |-  ( ( (ACS `  X )  e.  (Moore `  ~P X )  /\  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y ) { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) } )  e.  (ACS
`  X ) )
4022, 38, 39syl2anc 642 . 2  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X )
)
4120, 40eqeltrrd 2358 1  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  (
a  i^i  Y ) E  e.  a }  e.  (ACS `  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   A.wral 2543   {crab 2547    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   |^|_ciin 3906   ` cfv 5255   Fincfn 6863  Moorecmre 13484  ACScacs 13487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-en 6864  df-fin 6867  df-mre 13488  df-mrc 13489  df-acs 13491
  Copyright terms: Public domain W3C validator