Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acsfn1p Structured version   Unicode version

Theorem acsfn1p 27498
Description: Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
acsfn1p  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  (
a  i^i  Y ) E  e.  a }  e.  (ACS `  X )
)
Distinct variable groups:    a, b, V    E, a    X, a, b    Y, a, b
Allowed substitution hint:    E( b)

Proof of Theorem acsfn1p
StepHypRef Expression
1 riinrab 4169 . . 3  |-  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  ( X  i^i  Y
) ( { b }  C_  a  ->  E  e.  a ) }
2 elpwi 3809 . . . . . . . 8  |-  ( a  e.  ~P X  -> 
a  C_  X )
3 ssrin 3568 . . . . . . . 8  |-  ( a 
C_  X  ->  (
a  i^i  Y )  C_  ( X  i^i  Y
) )
42, 3syl 16 . . . . . . 7  |-  ( a  e.  ~P X  -> 
( a  i^i  Y
)  C_  ( X  i^i  Y ) )
54adantl 454 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  (
a  i^i  Y )  C_  ( X  i^i  Y
) )
6 ralss 3411 . . . . . 6  |-  ( ( a  i^i  Y ) 
C_  ( X  i^i  Y )  ->  ( A. b  e.  ( a  i^i  Y ) E  e.  a  <->  A. b  e.  ( X  i^i  Y ) ( b  e.  ( a  i^i  Y )  ->  E  e.  a ) ) )
75, 6syl 16 . . . . 5  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  ( A. b  e.  (
a  i^i  Y ) E  e.  a  <->  A. b  e.  ( X  i^i  Y
) ( b  e.  ( a  i^i  Y
)  ->  E  e.  a ) ) )
8 inss2 3564 . . . . . . . . . 10  |-  ( X  i^i  Y )  C_  Y
98sseli 3346 . . . . . . . . 9  |-  ( b  e.  ( X  i^i  Y )  ->  b  e.  Y )
109biantrud 495 . . . . . . . 8  |-  ( b  e.  ( X  i^i  Y )  ->  ( b  e.  a  <->  ( b  e.  a  /\  b  e.  Y ) ) )
11 vex 2961 . . . . . . . . . 10  |-  b  e. 
_V
1211snss 3928 . . . . . . . . 9  |-  ( b  e.  a  <->  { b }  C_  a )
1312bicomi 195 . . . . . . . 8  |-  ( { b }  C_  a  <->  b  e.  a )
14 elin 3532 . . . . . . . 8  |-  ( b  e.  ( a  i^i 
Y )  <->  ( b  e.  a  /\  b  e.  Y ) )
1510, 13, 143bitr4g 281 . . . . . . 7  |-  ( b  e.  ( X  i^i  Y )  ->  ( {
b }  C_  a  <->  b  e.  ( a  i^i 
Y ) ) )
1615imbi1d 310 . . . . . 6  |-  ( b  e.  ( X  i^i  Y )  ->  ( ( { b }  C_  a  ->  E  e.  a )  <->  ( b  e.  ( a  i^i  Y
)  ->  E  e.  a ) ) )
1716ralbiia 2739 . . . . 5  |-  ( A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a )  <->  A. b  e.  ( X  i^i  Y ) ( b  e.  ( a  i^i  Y )  ->  E  e.  a )
)
187, 17syl6rbbr 257 . . . 4  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  ( A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a )  <->  A. b  e.  ( a  i^i  Y ) E  e.  a ) )
1918rabbidva 2949 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a ) }  =  {
a  e.  ~P X  |  A. b  e.  ( a  i^i  Y ) E  e.  a } )
201, 19syl5eq 2482 . 2  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  ( a  i^i  Y
) E  e.  a } )
21 mreacs 13888 . . . 4  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
2221adantr 453 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
23 ssralv 3409 . . . . . 6  |-  ( ( X  i^i  Y ) 
C_  Y  ->  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y ) E  e.  X ) )
248, 23ax-mp 5 . . . . 5  |-  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y
) E  e.  X
)
25 simpll 732 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  X  e.  V )
26 simpr 449 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  E  e.  X )
27 inss1 3563 . . . . . . . . . . 11  |-  ( X  i^i  Y )  C_  X
2827sseli 3346 . . . . . . . . . 10  |-  ( b  e.  ( X  i^i  Y )  ->  b  e.  X )
2928ad2antlr 709 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  b  e.  X )
3029snssd 3945 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { b }  C_  X )
31 snfi 7190 . . . . . . . . 9  |-  { b }  e.  Fin
3231a1i 11 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { b }  e.  Fin )
33 acsfn 13889 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  E  e.  X
)  /\  ( {
b }  C_  X  /\  { b }  e.  Fin ) )  ->  { a  e.  ~P X  | 
( { b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) )
3425, 26, 30, 32, 33syl22anc 1186 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
3534ex 425 . . . . . 6  |-  ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  -> 
( E  e.  X  ->  { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) ) )
3635ralimdva 2786 . . . . 5  |-  ( X  e.  V  ->  ( A. b  e.  ( X  i^i  Y ) E  e.  X  ->  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) ) )
3724, 36syl5 31 . . . 4  |-  ( X  e.  V  ->  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y ) { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) ) )
3837imp 420 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
39 mreriincl 13828 . . 3  |-  ( ( (ACS `  X )  e.  (Moore `  ~P X )  /\  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y ) { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) } )  e.  (ACS
`  X ) )
4022, 38, 39syl2anc 644 . 2  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X )
)
4120, 40eqeltrrd 2513 1  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  (
a  i^i  Y ) E  e.  a }  e.  (ACS `  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726   A.wral 2707   {crab 2711    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   {csn 3816   |^|_ciin 4096   ` cfv 5457   Fincfn 7112  Moorecmre 13812  ACScacs 13815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-1o 6727  df-en 7113  df-fin 7116  df-mre 13816  df-mrc 13817  df-acs 13819
  Copyright terms: Public domain W3C validator