Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acsfn1p Unicode version

Theorem acsfn1p 27098
Description: Construction of a closure rule from a one-parameter partial operation. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
acsfn1p  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  (
a  i^i  Y ) E  e.  a }  e.  (ACS `  X )
)
Distinct variable groups:    a, b, V    E, a    X, a, b    Y, a, b
Allowed substitution hint:    E( b)

Proof of Theorem acsfn1p
StepHypRef Expression
1 riinrab 4079 . . 3  |-  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  ( X  i^i  Y
) ( { b }  C_  a  ->  E  e.  a ) }
2 elpwi 3722 . . . . . . . 8  |-  ( a  e.  ~P X  -> 
a  C_  X )
3 ssrin 3482 . . . . . . . 8  |-  ( a 
C_  X  ->  (
a  i^i  Y )  C_  ( X  i^i  Y
) )
42, 3syl 15 . . . . . . 7  |-  ( a  e.  ~P X  -> 
( a  i^i  Y
)  C_  ( X  i^i  Y ) )
54adantl 452 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  (
a  i^i  Y )  C_  ( X  i^i  Y
) )
6 ralss 3325 . . . . . 6  |-  ( ( a  i^i  Y ) 
C_  ( X  i^i  Y )  ->  ( A. b  e.  ( a  i^i  Y ) E  e.  a  <->  A. b  e.  ( X  i^i  Y ) ( b  e.  ( a  i^i  Y )  ->  E  e.  a ) ) )
75, 6syl 15 . . . . 5  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  ( A. b  e.  (
a  i^i  Y ) E  e.  a  <->  A. b  e.  ( X  i^i  Y
) ( b  e.  ( a  i^i  Y
)  ->  E  e.  a ) ) )
8 inss2 3478 . . . . . . . . . 10  |-  ( X  i^i  Y )  C_  Y
98sseli 3262 . . . . . . . . 9  |-  ( b  e.  ( X  i^i  Y )  ->  b  e.  Y )
109biantrud 493 . . . . . . . 8  |-  ( b  e.  ( X  i^i  Y )  ->  ( b  e.  a  <->  ( b  e.  a  /\  b  e.  Y ) ) )
11 vex 2876 . . . . . . . . . 10  |-  b  e. 
_V
1211snss 3841 . . . . . . . . 9  |-  ( b  e.  a  <->  { b }  C_  a )
1312bicomi 193 . . . . . . . 8  |-  ( { b }  C_  a  <->  b  e.  a )
14 elin 3446 . . . . . . . 8  |-  ( b  e.  ( a  i^i 
Y )  <->  ( b  e.  a  /\  b  e.  Y ) )
1510, 13, 143bitr4g 279 . . . . . . 7  |-  ( b  e.  ( X  i^i  Y )  ->  ( {
b }  C_  a  <->  b  e.  ( a  i^i 
Y ) ) )
1615imbi1d 308 . . . . . 6  |-  ( b  e.  ( X  i^i  Y )  ->  ( ( { b }  C_  a  ->  E  e.  a )  <->  ( b  e.  ( a  i^i  Y
)  ->  E  e.  a ) ) )
1716ralbiia 2660 . . . . 5  |-  ( A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a )  <->  A. b  e.  ( X  i^i  Y ) ( b  e.  ( a  i^i  Y )  ->  E  e.  a )
)
187, 17syl6rbbr 255 . . . 4  |-  ( ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  /\  a  e.  ~P X )  ->  ( A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a )  <->  A. b  e.  ( a  i^i  Y ) E  e.  a ) )
1918rabbidva 2864 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  ( X  i^i  Y ) ( { b }  C_  a  ->  E  e.  a ) }  =  {
a  e.  ~P X  |  A. b  e.  ( a  i^i  Y ) E  e.  a } )
201, 19syl5eq 2410 . 2  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  =  { a  e.  ~P X  |  A. b  e.  ( a  i^i  Y
) E  e.  a } )
21 mreacs 13770 . . . 4  |-  ( X  e.  V  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
2221adantr 451 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  (ACS `  X )  e.  (Moore `  ~P X ) )
23 ssralv 3323 . . . . . 6  |-  ( ( X  i^i  Y ) 
C_  Y  ->  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y ) E  e.  X ) )
248, 23ax-mp 8 . . . . 5  |-  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y
) E  e.  X
)
25 simpll 730 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  X  e.  V )
26 simpr 447 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  E  e.  X )
27 inss1 3477 . . . . . . . . . . 11  |-  ( X  i^i  Y )  C_  X
2827sseli 3262 . . . . . . . . . 10  |-  ( b  e.  ( X  i^i  Y )  ->  b  e.  X )
2928ad2antlr 707 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  b  e.  X )
3029snssd 3858 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { b }  C_  X )
31 snfi 7084 . . . . . . . . 9  |-  { b }  e.  Fin
3231a1i 10 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { b }  e.  Fin )
33 acsfn 13771 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  E  e.  X
)  /\  ( {
b }  C_  X  /\  { b }  e.  Fin ) )  ->  { a  e.  ~P X  | 
( { b } 
C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) )
3425, 26, 30, 32, 33syl22anc 1184 . . . . . . 7  |-  ( ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  /\  E  e.  X
)  ->  { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
3534ex 423 . . . . . 6  |-  ( ( X  e.  V  /\  b  e.  ( X  i^i  Y ) )  -> 
( E  e.  X  ->  { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X ) ) )
3635ralimdva 2706 . . . . 5  |-  ( X  e.  V  ->  ( A. b  e.  ( X  i^i  Y ) E  e.  X  ->  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) ) )
3724, 36syl5 28 . . . 4  |-  ( X  e.  V  ->  ( A. b  e.  Y  E  e.  X  ->  A. b  e.  ( X  i^i  Y ) { a  e.  ~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS `  X
) ) )
3837imp 418 . . 3  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )
39 mreriincl 13710 . . 3  |-  ( ( (ACS `  X )  e.  (Moore `  ~P X )  /\  A. b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) }  e.  (ACS
`  X ) )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y ) { a  e.  ~P X  |  ( {
b }  C_  a  ->  E  e.  a ) } )  e.  (ACS
`  X ) )
4022, 38, 39syl2anc 642 . 2  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  ( ~P X  i^i  |^|_ b  e.  ( X  i^i  Y
) { a  e. 
~P X  |  ( { b }  C_  a  ->  E  e.  a ) } )  e.  (ACS `  X )
)
4120, 40eqeltrrd 2441 1  |-  ( ( X  e.  V  /\  A. b  e.  Y  E  e.  X )  ->  { a  e.  ~P X  |  A. b  e.  (
a  i^i  Y ) E  e.  a }  e.  (ACS `  X )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1715   A.wral 2628   {crab 2632    i^i cin 3237    C_ wss 3238   ~Pcpw 3714   {csn 3729   |^|_ciin 4008   ` cfv 5358   Fincfn 7006  Moorecmre 13694  ACScacs 13697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-1o 6621  df-en 7007  df-fin 7010  df-mre 13698  df-mrc 13699  df-acs 13701
  Copyright terms: Public domain W3C validator