MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adantrlr Structured version   Unicode version

Theorem adantrlr 705
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Hypothesis
Ref Expression
adantr2.1  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
Assertion
Ref Expression
adantrlr  |-  ( (
ph  /\  ( ( ps  /\  ta )  /\  ch ) )  ->  th )

Proof of Theorem adantrlr
StepHypRef Expression
1 simpl 445 . 2  |-  ( ( ps  /\  ta )  ->  ps )
2 adantr2.1 . 2  |-  ( (
ph  /\  ( ps  /\ 
ch ) )  ->  th )
31, 2sylanr1 635 1  |-  ( (
ph  /\  ( ( ps  /\  ta )  /\  ch ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360
This theorem is referenced by:  smoord  6656  lediv12a  9934  nrmmetd  18653  pntrmax  21289  ablo4  21906  mdslmd3i  23866  atom1d  23887  fdc  26487  incsequz  26490  crngm4  26651  ps-2  30373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179  df-an 362
  Copyright terms: Public domain W3C validator