MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcan2 Unicode version

Theorem addcan2 9184
Description: Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addcan2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )

Proof of Theorem addcan2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnegex 9180 . . 3  |-  ( C  e.  CC  ->  E. x  e.  CC  ( C  +  x )  =  0 )
213ad2ant3 980 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  CC  ( C  +  x )  =  0 )
3 oveq1 6028 . . . 4  |-  ( ( A  +  C )  =  ( B  +  C )  ->  (
( A  +  C
)  +  x )  =  ( ( B  +  C )  +  x ) )
4 simpl1 960 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
5 simpl3 962 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
6 simprl 733 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
74, 5, 6addassd 9044 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  +  x )  =  ( A  +  ( C  +  x ) ) )
8 simprr 734 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  x )  =  0 )
98oveq2d 6037 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( A  +  ( C  +  x ) )  =  ( A  +  0 ) )
10 addid1 9179 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
114, 10syl 16 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( A  +  0 )  =  A )
127, 9, 113eqtrd 2424 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  +  x )  =  A )
13 simpl2 961 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
1413, 5, 6addassd 9044 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( B  +  C )  +  x )  =  ( B  +  ( C  +  x ) ) )
158oveq2d 6037 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( B  +  ( C  +  x ) )  =  ( B  +  0 ) )
16 addid1 9179 . . . . . . 7  |-  ( B  e.  CC  ->  ( B  +  0 )  =  B )
1713, 16syl 16 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( B  +  0 )  =  B )
1814, 15, 173eqtrd 2424 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( B  +  C )  +  x )  =  B )
1912, 18eqeq12d 2402 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( A  +  C
)  +  x )  =  ( ( B  +  C )  +  x )  <->  A  =  B ) )
203, 19syl5ib 211 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  =  ( B  +  C )  ->  A  =  B ) )
21 oveq1 6028 . . 3  |-  ( A  =  B  ->  ( A  +  C )  =  ( B  +  C ) )
2220, 21impbid1 195 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( C  +  x
)  =  0 ) )  ->  ( ( A  +  C )  =  ( B  +  C )  <->  A  =  B ) )
232, 22rexlimddv 2778 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  C
)  =  ( B  +  C )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2651  (class class class)co 6021   CCcc 8922   0cc0 8924    + caddc 8927
This theorem is referenced by:  addcom  9185  addcan2i  9193  addcomd  9201  addcan2d  9203  muleqadd  9599  fargshiftf1  21473  subfacp1lem6  24651  axlowdimlem14  25609
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-po 4445  df-so 4446  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-ltxr 9059
  Copyright terms: Public domain W3C validator