MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem1 Unicode version

Theorem addclprlem1 8656
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem1  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  e.  A
) )

Proof of Theorem addclprlem1
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 8631 . . 3  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  g  e.  Q. )
2 ltrnq 8619 . . . . 5  |-  ( x 
<Q  ( g  +Q  h
)  <->  ( *Q `  ( g  +Q  h
) )  <Q  ( *Q `  x ) )
3 ltmnq 8612 . . . . . 6  |-  ( x  e.  Q.  ->  (
( *Q `  (
g  +Q  h ) )  <Q  ( *Q `  x )  <->  ( x  .Q  ( *Q `  (
g  +Q  h ) ) )  <Q  (
x  .Q  ( *Q
`  x ) ) ) )
4 ovex 5899 . . . . . . 7  |-  ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  e. 
_V
5 ovex 5899 . . . . . . 7  |-  ( x  .Q  ( *Q `  x ) )  e. 
_V
6 ltmnq 8612 . . . . . . 7  |-  ( w  e.  Q.  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
7 vex 2804 . . . . . . 7  |-  g  e. 
_V
8 mulcomnq 8593 . . . . . . 7  |-  ( y  .Q  z )  =  ( z  .Q  y
)
94, 5, 6, 7, 8caovord2 6048 . . . . . 6  |-  ( g  e.  Q.  ->  (
( x  .Q  ( *Q `  ( g  +Q  h ) ) ) 
<Q  ( x  .Q  ( *Q `  x ) )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  ( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
103, 9sylan9bbr 681 . . . . 5  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( *Q `  ( g  +Q  h
) )  <Q  ( *Q `  x )  <->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
112, 10syl5bb 248 . . . 4  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  ( ( x  .Q  ( *Q `  x ) )  .Q  g ) ) )
12 recidnq 8605 . . . . . . 7  |-  ( x  e.  Q.  ->  (
x  .Q  ( *Q
`  x ) )  =  1Q )
1312oveq1d 5889 . . . . . 6  |-  ( x  e.  Q.  ->  (
( x  .Q  ( *Q `  x ) )  .Q  g )  =  ( 1Q  .Q  g
) )
14 mulcomnq 8593 . . . . . . 7  |-  ( 1Q 
.Q  g )  =  ( g  .Q  1Q )
15 mulidnq 8603 . . . . . . 7  |-  ( g  e.  Q.  ->  (
g  .Q  1Q )  =  g )
1614, 15syl5eq 2340 . . . . . 6  |-  ( g  e.  Q.  ->  ( 1Q  .Q  g )  =  g )
1713, 16sylan9eqr 2350 . . . . 5  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( x  .Q  ( *Q `  x ) )  .Q  g )  =  g )
1817breq2d 4051 . . . 4  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  <Q  (
( x  .Q  ( *Q `  x ) )  .Q  g )  <->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
g ) )
1911, 18bitrd 244 . . 3  |-  ( ( g  e.  Q.  /\  x  e.  Q. )  ->  ( x  <Q  (
g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  g ) )
201, 19sylan 457 . 2  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  <-> 
( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g ) 
<Q  g ) )
21 prcdnq 8633 . . 3  |-  ( ( A  e.  P.  /\  g  e.  A )  ->  ( ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  <Q  g  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h ) ) )  .Q  g )  e.  A ) )
2221adantr 451 . 2  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( ( ( x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  <Q 
g  ->  ( (
x  .Q  ( *Q
`  ( g  +Q  h ) ) )  .Q  g )  e.  A ) )
2320, 22sylbid 206 1  |-  ( ( ( A  e.  P.  /\  g  e.  A )  /\  x  e.  Q. )  ->  ( x  <Q  ( g  +Q  h )  ->  ( ( x  .Q  ( *Q `  ( g  +Q  h
) ) )  .Q  g )  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Q.cnq 8490   1Qc1q 8491    +Q cplq 8493    .Q cmq 8494   *Qcrq 8495    <Q cltq 8496   P.cnp 8497
This theorem is referenced by:  addclprlem2  8657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-mi 8514  df-lti 8515  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621
  Copyright terms: Public domain W3C validator