MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcmpblnr Unicode version

Theorem addcmpblnr 8694
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcmpblnr  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. ) )

Proof of Theorem addcmpblnr
StepHypRef Expression
1 oveq12 5867 . 2  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( A  +P.  D
)  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R ) ) )
2 addclpr 8642 . . . . . . . 8  |-  ( ( A  e.  P.  /\  F  e.  P. )  ->  ( A  +P.  F
)  e.  P. )
3 addclpr 8642 . . . . . . . 8  |-  ( ( B  e.  P.  /\  G  e.  P. )  ->  ( B  +P.  G
)  e.  P. )
42, 3anim12i 549 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  F  e.  P. )  /\  ( B  e.  P.  /\  G  e.  P. )
)  ->  ( ( A  +P.  F )  e. 
P.  /\  ( B  +P.  G )  e.  P. ) )
54an4s 799 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( F  e.  P.  /\  G  e.  P. )
)  ->  ( ( A  +P.  F )  e. 
P.  /\  ( B  +P.  G )  e.  P. ) )
6 addclpr 8642 . . . . . . . 8  |-  ( ( C  e.  P.  /\  R  e.  P. )  ->  ( C  +P.  R
)  e.  P. )
7 addclpr 8642 . . . . . . . 8  |-  ( ( D  e.  P.  /\  S  e.  P. )  ->  ( D  +P.  S
)  e.  P. )
86, 7anim12i 549 . . . . . . 7  |-  ( ( ( C  e.  P.  /\  R  e.  P. )  /\  ( D  e.  P.  /\  S  e.  P. )
)  ->  ( ( C  +P.  R )  e. 
P.  /\  ( D  +P.  S )  e.  P. ) )
98an4s 799 . . . . . 6  |-  ( ( ( C  e.  P.  /\  D  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. )
)  ->  ( ( C  +P.  R )  e. 
P.  /\  ( D  +P.  S )  e.  P. ) )
105, 9anim12i 549 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( F  e.  P.  /\  G  e.  P. ) )  /\  ( ( C  e. 
P.  /\  D  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e. 
P. )  /\  (
( C  +P.  R
)  e.  P.  /\  ( D  +P.  S )  e.  P. ) ) )
1110an4s 799 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e. 
P. )  /\  (
( C  +P.  R
)  e.  P.  /\  ( D  +P.  S )  e.  P. ) ) )
12 enrbreq 8689 . . . 4  |-  ( ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e.  P. )  /\  ( ( C  +P.  R )  e.  P.  /\  ( D  +P.  S )  e.  P. ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R
) ) ) )
1311, 12syl 15 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R
) ) ) )
14 addcompr 8645 . . . . . . . 8  |-  ( F  +P.  D )  =  ( D  +P.  F
)
1514oveq1i 5868 . . . . . . 7  |-  ( ( F  +P.  D )  +P.  S )  =  ( ( D  +P.  F )  +P.  S )
16 addasspr 8646 . . . . . . 7  |-  ( ( F  +P.  D )  +P.  S )  =  ( F  +P.  ( D  +P.  S ) )
17 addasspr 8646 . . . . . . 7  |-  ( ( D  +P.  F )  +P.  S )  =  ( D  +P.  ( F  +P.  S ) )
1815, 16, 173eqtr3i 2311 . . . . . 6  |-  ( F  +P.  ( D  +P.  S ) )  =  ( D  +P.  ( F  +P.  S ) )
1918oveq2i 5869 . . . . 5  |-  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) )
20 addasspr 8646 . . . . 5  |-  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) )
21 addasspr 8646 . . . . 5  |-  ( ( A  +P.  D )  +P.  ( F  +P.  S ) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) )
2219, 20, 213eqtr4i 2313 . . . 4  |-  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( A  +P.  D
)  +P.  ( F  +P.  S ) )
23 addcompr 8645 . . . . . . . 8  |-  ( G  +P.  C )  =  ( C  +P.  G
)
2423oveq1i 5868 . . . . . . 7  |-  ( ( G  +P.  C )  +P.  R )  =  ( ( C  +P.  G )  +P.  R )
25 addasspr 8646 . . . . . . 7  |-  ( ( G  +P.  C )  +P.  R )  =  ( G  +P.  ( C  +P.  R ) )
26 addasspr 8646 . . . . . . 7  |-  ( ( C  +P.  G )  +P.  R )  =  ( C  +P.  ( G  +P.  R ) )
2724, 25, 263eqtr3i 2311 . . . . . 6  |-  ( G  +P.  ( C  +P.  R ) )  =  ( C  +P.  ( G  +P.  R ) )
2827oveq2i 5869 . . . . 5  |-  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) )
29 addasspr 8646 . . . . 5  |-  ( ( B  +P.  G )  +P.  ( C  +P.  R ) )  =  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) )
30 addasspr 8646 . . . . 5  |-  ( ( B  +P.  C )  +P.  ( G  +P.  R ) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) )
3128, 29, 303eqtr4i 2313 . . . 4  |-  ( ( B  +P.  G )  +P.  ( C  +P.  R ) )  =  ( ( B  +P.  C
)  +P.  ( G  +P.  R ) )
3222, 31eqeq12i 2296 . . 3  |-  ( ( ( A  +P.  F
)  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R ) )  <-> 
( ( A  +P.  D )  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R
) ) )
3313, 32syl6bb 252 . 2  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  D )  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R
) ) ) )
341, 33syl5ibr 212 1  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023  (class class class)co 5858   P.cnp 8481    +P. cpp 8483    ~R cer 8488
This theorem is referenced by:  addsrpr  8697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-plp 8607  df-enr 8681
  Copyright terms: Public domain W3C validator