MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddiri Unicode version

Theorem adddiri 8848
Description: Distributive law. (Contributed by NM, 16-Feb-1995.)
Hypotheses
Ref Expression
axi.1  |-  A  e.  CC
axi.2  |-  B  e.  CC
axi.3  |-  C  e.  CC
Assertion
Ref Expression
adddiri  |-  ( ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) )

Proof of Theorem adddiri
StepHypRef Expression
1 axi.1 . 2  |-  A  e.  CC
2 axi.2 . 2  |-  B  e.  CC
3 axi.3 . 2  |-  C  e.  CC
4 adddir 8830 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C
) ) )
51, 2, 3, 4mp3an 1277 1  |-  ( ( A  +  B )  x.  C )  =  ( ( A  x.  C )  +  ( B  x.  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684  (class class class)co 5858   CCcc 8735    + caddc 8740    x. cmul 8742
This theorem is referenced by:  numma  10155  binom2i  11212  binom2aiOLD  11213  dec5nprm  13081  dec2nprm  13082  mod2xnegi  13086  karatsuba  13099  sincosq3sgn  19868  sincosq4sgn  19869  ang180lem2  20108  1cubrlem  20137  bposlem8  20530  normlem3  21691  3timesi  25178
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-addcl 8797  ax-mulcom 8801  ax-distr 8804
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator