MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addgt0d Unicode version

Theorem addgt0d 9565
Description: Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
addgt0d.3  |-  ( ph  ->  0  <  A )
addgt0d.4  |-  ( ph  ->  0  <  B )
Assertion
Ref Expression
addgt0d  |-  ( ph  ->  0  <  ( A  +  B ) )

Proof of Theorem addgt0d
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 ltnegd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 0re 9055 . . . 4  |-  0  e.  RR
43a1i 11 . . 3  |-  ( ph  ->  0  e.  RR )
5 addgt0d.3 . . 3  |-  ( ph  ->  0  <  A )
64, 1, 5ltled 9185 . 2  |-  ( ph  ->  0  <_  A )
7 addgt0d.4 . 2  |-  ( ph  ->  0  <  B )
81, 2, 6, 7addgegt0d 9564 1  |-  ( ph  ->  0  <  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1721   class class class wbr 4180  (class class class)co 6048   RRcr 8953   0cc0 8954    + caddc 8957    < clt 9084
This theorem is referenced by:  tanhlt1  12724  pythagtriplem11  13162  pythagtriplem12  13163  pythagtriplem13  13164  pythagtriplem14  13165  pythagtriplem16  13167  asinsin  20693  bpoly4  26017  pellexlem2  26791  stirlinglem15  27712
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-po 4471  df-so 4472  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090
  Copyright terms: Public domain W3C validator