MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addgt0sr Unicode version

Theorem addgt0sr 8813
Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addgt0sr  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  +R  B ) )

Proof of Theorem addgt0sr
StepHypRef Expression
1 ltrelsr 8780 . . . . . 6  |-  <R  C_  ( R.  X.  R. )
21brel 4816 . . . . 5  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 449 . . . 4  |-  ( 0R 
<R  A  ->  A  e. 
R. )
4 ltasr 8809 . . . . 5  |-  ( A  e.  R.  ->  ( 0R  <R  B  <->  ( A  +R  0R )  <R  ( A  +R  B ) ) )
5 0idsr 8806 . . . . . 6  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
65breq1d 4112 . . . . 5  |-  ( A  e.  R.  ->  (
( A  +R  0R )  <R  ( A  +R  B )  <->  A  <R  ( A  +R  B ) ) )
74, 6bitrd 244 . . . 4  |-  ( A  e.  R.  ->  ( 0R  <R  B  <->  A  <R  ( A  +R  B ) ) )
83, 7syl 15 . . 3  |-  ( 0R 
<R  A  ->  ( 0R 
<R  B  <->  A  <R  ( A  +R  B ) ) )
98biimpa 470 . 2  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  A  <R  ( A  +R  B ) )
10 ltsosr 8803 . . 3  |-  <R  Or  R.
1110, 1sotri 5149 . 2  |-  ( ( 0R  <R  A  /\  A  <R  ( A  +R  B ) )  ->  0R  <R  ( A  +R  B ) )
129, 11syldan 456 1  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  +R  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1710   class class class wbr 4102  (class class class)co 5942   R.cnr 8576   0Rc0r 8577    +R cplr 8580    <R cltr 8582
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-omul 6568  df-er 6744  df-ec 6746  df-qs 6750  df-ni 8583  df-pli 8584  df-mi 8585  df-lti 8586  df-plpq 8619  df-mpq 8620  df-ltpq 8621  df-enq 8622  df-nq 8623  df-erq 8624  df-plq 8625  df-mq 8626  df-1nq 8627  df-rq 8628  df-ltnq 8629  df-np 8692  df-1p 8693  df-plp 8694  df-ltp 8696  df-plpr 8766  df-enr 8768  df-nr 8769  df-plr 8770  df-ltr 8772  df-0r 8773
  Copyright terms: Public domain W3C validator