MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addltmul Structured version   Unicode version

Theorem addltmul 10195
Description: Sum is less than product for numbers greater than 2. (Contributed by Stefan Allan, 24-Sep-2010.)
Assertion
Ref Expression
addltmul  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )

Proof of Theorem addltmul
StepHypRef Expression
1 2re 10061 . . . . . . 7  |-  2  e.  RR
2 1re 9082 . . . . . . 7  |-  1  e.  RR
3 ltsub1 9516 . . . . . . 7  |-  ( ( 2  e.  RR  /\  A  e.  RR  /\  1  e.  RR )  ->  (
2  <  A  <->  ( 2  -  1 )  < 
( A  -  1 ) ) )
41, 2, 3mp3an13 1270 . . . . . 6  |-  ( A  e.  RR  ->  (
2  <  A  <->  ( 2  -  1 )  < 
( A  -  1 ) ) )
5 2m1e1 10087 . . . . . . 7  |-  ( 2  -  1 )  =  1
65breq1i 4211 . . . . . 6  |-  ( ( 2  -  1 )  <  ( A  - 
1 )  <->  1  <  ( A  -  1 ) )
74, 6syl6bb 253 . . . . 5  |-  ( A  e.  RR  ->  (
2  <  A  <->  1  <  ( A  -  1 ) ) )
8 ltsub1 9516 . . . . . . 7  |-  ( ( 2  e.  RR  /\  B  e.  RR  /\  1  e.  RR )  ->  (
2  <  B  <->  ( 2  -  1 )  < 
( B  -  1 ) ) )
91, 2, 8mp3an13 1270 . . . . . 6  |-  ( B  e.  RR  ->  (
2  <  B  <->  ( 2  -  1 )  < 
( B  -  1 ) ) )
105breq1i 4211 . . . . . 6  |-  ( ( 2  -  1 )  <  ( B  - 
1 )  <->  1  <  ( B  -  1 ) )
119, 10syl6bb 253 . . . . 5  |-  ( B  e.  RR  ->  (
2  <  B  <->  1  <  ( B  -  1 ) ) )
127, 11bi2anan9 844 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  <->  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) ) )
13 peano2rem 9359 . . . . 5  |-  ( A  e.  RR  ->  ( A  -  1 )  e.  RR )
14 peano2rem 9359 . . . . 5  |-  ( B  e.  RR  ->  ( B  -  1 )  e.  RR )
15 mulgt1 9861 . . . . . 6  |-  ( ( ( ( A  - 
1 )  e.  RR  /\  ( B  -  1 )  e.  RR )  /\  ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) ) )  -> 
1  <  ( ( A  -  1 )  x.  ( B  - 
1 ) ) )
1615ex 424 . . . . 5  |-  ( ( ( A  -  1 )  e.  RR  /\  ( B  -  1
)  e.  RR )  ->  ( ( 1  <  ( A  - 
1 )  /\  1  <  ( B  -  1 ) )  ->  1  <  ( ( A  - 
1 )  x.  ( B  -  1 ) ) ) )
1713, 14, 16syl2an 464 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
( A  -  1 )  /\  1  < 
( B  -  1 ) )  ->  1  <  ( ( A  - 
1 )  x.  ( B  -  1 ) ) ) )
1812, 17sylbid 207 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  ->  1  <  ( ( A  -  1 )  x.  ( B  -  1 ) ) ) )
19 recn 9072 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
20 recn 9072 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
21 ax-1cn 9040 . . . . . . 7  |-  1  e.  CC
22 mulsub 9468 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  1  e.  CC )  /\  ( B  e.  CC  /\  1  e.  CC ) )  -> 
( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2321, 22mpanl2 663 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  1  e.  CC ) )  ->  ( ( A  -  1 )  x.  ( B  - 
1 ) )  =  ( ( ( A  x.  B )  +  ( 1  x.  1 ) )  -  (
( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2421, 23mpanr2 666 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2519, 20, 24syl2an 464 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  - 
1 )  x.  ( B  -  1 ) )  =  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) )
2625breq2d 4216 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
27 1t1e1 10118 . . . . . . 7  |-  ( 1  x.  1 )  =  1
2827oveq2i 6084 . . . . . 6  |-  ( ( A  x.  B )  +  ( 1  x.  1 ) )  =  ( ( A  x.  B )  +  1 )
2928breq2i 4212 . . . . 5  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  ( 1  x.  1 ) )  <->  ( (
( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  < 
( ( A  x.  B )  +  1 ) )
30 remulcl 9067 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  x.  1 )  e.  RR )
312, 30mpan2 653 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  x.  1 )  e.  RR )
32 remulcl 9067 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  e.  RR )  ->  ( B  x.  1 )  e.  RR )
332, 32mpan2 653 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  x.  1 )  e.  RR )
34 readdcl 9065 . . . . . . 7  |-  ( ( ( A  x.  1 )  e.  RR  /\  ( B  x.  1
)  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR )
3531, 33, 34syl2an 464 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR )
36 remulcl 9067 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
372, 2remulcli 9096 . . . . . . 7  |-  ( 1  x.  1 )  e.  RR
38 readdcl 9065 . . . . . . 7  |-  ( ( ( A  x.  B
)  e.  RR  /\  ( 1  x.  1 )  e.  RR )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )
3936, 37, 38sylancl 644 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )
40 ltaddsub2 9495 . . . . . . 7  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  1  e.  RR  /\  (
( A  x.  B
)  +  ( 1  x.  1 ) )  e.  RR )  -> 
( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  ( 1  x.  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
412, 40mp3an2 1267 . . . . . 6  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( ( A  x.  B )  +  ( 1  x.  1 ) )  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  < 
( ( A  x.  B )  +  ( 1  x.  1 ) )  <->  1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4235, 39, 41syl2anc 643 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  ( 1  x.  1 ) )  <->  1  <  ( ( ( A  x.  B
)  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) ) ) )
4329, 42syl5rbbr 252 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( ( A  x.  B )  +  ( 1  x.  1 ) )  -  ( ( A  x.  1 )  +  ( B  x.  1 ) ) )  <-> 
( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
44 ltadd1 9487 . . . . . . 7  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( A  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
452, 44mp3an3 1268 . . . . . 6  |-  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  < 
( A  x.  B
)  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  1 ) ) )
4635, 36, 45syl2anc 643 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  ( ( A  x.  B )  +  1 ) ) )
47 ax-1rid 9052 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
48 ax-1rid 9052 . . . . . . 7  |-  ( B  e.  RR  ->  ( B  x.  1 )  =  B )
4947, 48oveqan12d 6092 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  1 )  +  ( B  x.  1 ) )  =  ( A  +  B ) )
5049breq1d 4214 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  <  ( A  x.  B )  <->  ( A  +  B )  <  ( A  x.  B ) ) )
5146, 50bitr3d 247 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( ( ( A  x.  1 )  +  ( B  x.  1 ) )  +  1 )  <  (
( A  x.  B
)  +  1 )  <-> 
( A  +  B
)  <  ( A  x.  B ) ) )
5226, 43, 513bitrd 271 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  (
( A  -  1 )  x.  ( B  -  1 ) )  <-> 
( A  +  B
)  <  ( A  x.  B ) ) )
5318, 52sylibd 206 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 2  < 
A  /\  2  <  B )  ->  ( A  +  B )  <  ( A  x.  B )
) )
5453imp 419 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 2  < 
A  /\  2  <  B ) )  ->  ( A  +  B )  <  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204  (class class class)co 6073   CCcc 8980   RRcr 8981   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    - cmin 9283   2c2 10041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-2 10050
  Copyright terms: Public domain W3C validator