MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnidpi Unicode version

Theorem addnidpi 8541
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addnidpi  |-  ( A  e.  N.  ->  -.  ( A  +N  B
)  =  A )

Proof of Theorem addnidpi
StepHypRef Expression
1 pinn 8518 . . . . 5  |-  ( A  e.  N.  ->  A  e.  om )
2 elni2 8517 . . . . . 6  |-  ( B  e.  N.  <->  ( B  e.  om  /\  (/)  e.  B
) )
3 nnaordi 6632 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  ( A  +o  (/) )  e.  ( A  +o  B
) ) )
4 nna0 6618 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
54eleq1d 2362 . . . . . . . . . . 11  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e.  ( A  +o  B
)  <->  A  e.  ( A  +o  B ) ) )
6 nnord 4680 . . . . . . . . . . . . . 14  |-  ( A  e.  om  ->  Ord  A )
7 ordirr 4426 . . . . . . . . . . . . . 14  |-  ( Ord 
A  ->  -.  A  e.  A )
86, 7syl 15 . . . . . . . . . . . . 13  |-  ( A  e.  om  ->  -.  A  e.  A )
9 eleq2 2357 . . . . . . . . . . . . . 14  |-  ( ( A  +o  B )  =  A  ->  ( A  e.  ( A  +o  B )  <->  A  e.  A ) )
109notbid 285 . . . . . . . . . . . . 13  |-  ( ( A  +o  B )  =  A  ->  ( -.  A  e.  ( A  +o  B )  <->  -.  A  e.  A ) )
118, 10syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( A  e.  om  ->  (
( A  +o  B
)  =  A  ->  -.  A  e.  ( A  +o  B ) ) )
1211con2d 107 . . . . . . . . . . 11  |-  ( A  e.  om  ->  ( A  e.  ( A  +o  B )  ->  -.  ( A  +o  B
)  =  A ) )
135, 12sylbid 206 . . . . . . . . . 10  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e.  ( A  +o  B
)  ->  -.  ( A  +o  B )  =  A ) )
1413adantl 452 . . . . . . . . 9  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( A  +o  (/) )  e.  ( A  +o  B )  ->  -.  ( A  +o  B
)  =  A ) )
153, 14syld 40 . . . . . . . 8  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( (/)  e.  B  ->  -.  ( A  +o  B )  =  A ) )
1615expcom 424 . . . . . . 7  |-  ( A  e.  om  ->  ( B  e.  om  ->  (
(/)  e.  B  ->  -.  ( A  +o  B
)  =  A ) ) )
1716imp32 422 . . . . . 6  |-  ( ( A  e.  om  /\  ( B  e.  om  /\  (/)  e.  B ) )  ->  -.  ( A  +o  B )  =  A )
182, 17sylan2b 461 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  N. )  ->  -.  ( A  +o  B )  =  A )
191, 18sylan 457 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +o  B )  =  A )
20 addpiord 8524 . . . . 5  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  ( A  +o  B ) )
2120eqeq1d 2304 . . . 4  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  =  A  <-> 
( A  +o  B
)  =  A ) )
2219, 21mtbird 292 . . 3  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  -.  ( A  +N  B )  =  A )
2322a1d 22 . 2  |-  ( ( A  e.  N.  /\  B  e.  N. )  ->  ( A  e.  N.  ->  -.  ( A  +N  B )  =  A ) )
24 dmaddpi 8530 . . . . . 6  |-  dom  +N  =  ( N.  X.  N. )
2524ndmov 6020 . . . . 5  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( A  +N  B
)  =  (/) )
2625eqeq1d 2304 . . . 4  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  =  A  <->  (/)  =  A ) )
27 0npi 8522 . . . . 5  |-  -.  (/)  e.  N.
28 eleq1 2356 . . . . 5  |-  ( (/)  =  A  ->  ( (/)  e.  N.  <->  A  e.  N. ) )
2927, 28mtbii 293 . . . 4  |-  ( (/)  =  A  ->  -.  A  e.  N. )
3026, 29syl6bi 219 . . 3  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( ( A  +N  B )  =  A  ->  -.  A  e.  N. ) )
3130con2d 107 . 2  |-  ( -.  ( A  e.  N.  /\  B  e.  N. )  ->  ( A  e.  N.  ->  -.  ( A  +N  B )  =  A ) )
3223, 31pm2.61i 156 1  |-  ( A  e.  N.  ->  -.  ( A  +N  B
)  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   (/)c0 3468   Ord word 4407   omcom 4672  (class class class)co 5874    +o coa 6492   N.cnpi 8482    +N cpli 8483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-oadd 6499  df-ni 8512  df-pli 8513
  Copyright terms: Public domain W3C validator