MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addnqf Unicode version

Theorem addnqf 8572
Description: Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
addnqf  |-  +Q  :
( Q.  X.  Q. )
--> Q.

Proof of Theorem addnqf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nqerf 8554 . . . 4  |-  /Q :
( N.  X.  N. )
--> Q.
2 addpqf 8568 . . . 4  |-  +pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
3 fco 5398 . . . 4  |-  ( ( /Q : ( N. 
X.  N. ) --> Q.  /\  +pQ 
: ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. ) )  ->  ( /Q  o.  +pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q. )
41, 2, 3mp2an 653 . . 3  |-  ( /Q  o.  +pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q.
5 elpqn 8549 . . . . 5  |-  ( x  e.  Q.  ->  x  e.  ( N.  X.  N. ) )
65ssriv 3184 . . . 4  |-  Q.  C_  ( N.  X.  N. )
7 xpss12 4792 . . . 4  |-  ( ( Q.  C_  ( N.  X.  N. )  /\  Q.  C_  ( N.  X.  N. ) )  ->  ( Q.  X.  Q. )  C_  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
86, 6, 7mp2an 653 . . 3  |-  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
9 fssres 5408 . . 3  |-  ( ( ( /Q  o.  +pQ  ) : ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> Q.  /\  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) ) : ( Q.  X.  Q. )
--> Q. )
104, 8, 9mp2an 653 . 2  |-  ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q.
11 df-plq 8538 . . 3  |-  +Q  =  ( ( /Q  o.  +pQ  )  |`  ( Q. 
X.  Q. ) )
1211feq1i 5383 . 2  |-  (  +Q  : ( Q.  X.  Q. ) --> Q.  <->  ( ( /Q  o.  +pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q. )
1310, 12mpbir 200 1  |-  +Q  :
( Q.  X.  Q. )
--> Q.
Colors of variables: wff set class
Syntax hints:    C_ wss 3152    X. cxp 4687    |` cres 4691    o. ccom 4693   -->wf 5251   N.cnpi 8466    +pQ cplpq 8470   Q.cnq 8474   /Qcerq 8476    +Q cplq 8477
This theorem is referenced by:  addcomnq  8575  adderpq  8580  addassnq  8582  distrnq  8585  ltanq  8595  ltexnq  8599  nsmallnq  8601  ltbtwnnq  8602  prlem934  8657  ltaddpr  8658  ltexprlem2  8661  ltexprlem3  8662  ltexprlem4  8663  ltexprlem6  8665  ltexprlem7  8666  prlem936  8671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-1nq 8540
  Copyright terms: Public domain W3C validator