MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsubd Unicode version

Theorem addsubd 9223
Description: Law for subtraction and addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
addsubd  |-  ( ph  ->  ( ( A  +  B )  -  C
)  =  ( ( A  -  C )  +  B ) )

Proof of Theorem addsubd
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subaddd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 addsub 9107 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  -  C )  =  ( ( A  -  C )  +  B ) )
51, 2, 3, 4syl3anc 1182 1  |-  ( ph  ->  ( ( A  +  B )  -  C
)  =  ( ( A  -  C )  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1633    e. wcel 1701  (class class class)co 5900   CCcc 8780    + caddc 8785    - cmin 9082
This theorem is referenced by:  lesub2  9314  modadd1  11048  discr  11285  bcp1n  11375  bcpasc  11380  revccat  11531  crre  11646  isercoll2  12189  binomlem  12334  climcndslem1  12355  pythagtriplem14  12928  vdwlem6  13080  gsumccat  14513  itgcnlem  19197  dvcvx  19420  dvfsumlem1  19426  dvfsumlem2  19427  plymullem1  19649  aaliou3lem2  19776  abelthlem2  19861  tangtx  19926  loglesqr  20151  dcubic1  20194  quart1lem  20204  quartlem1  20206  basellem3  20373  basellem5  20375  chtub  20504  logfaclbnd  20514  bcp1ctr  20571  lgsquad2lem1  20650  selberglem1  20747  selberg3  20761  selbergr  20770  selberg3r  20771  pntlemf  20807  pntlemo  20809  ltesubnnd  23314  ballotlemfp1  23923  subfacp1lem6  24000  brbtwn2  24919  colinearalglem1  24920  colinearalglem2  24921  jm2.24nn  26194  jm2.18  26229  jm2.25  26240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-po 4351  df-so 4352  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-ltxr 8917  df-sub 9084
  Copyright terms: Public domain W3C validator