MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aecom Unicode version

Theorem aecom 1886
Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when  x and  y are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
aecom  |-  ( A. x  x  =  y  ->  A. y  y  =  x )

Proof of Theorem aecom
StepHypRef Expression
1 ax10 1884 1  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527
This theorem is referenced by:  aecoms  1887  naecoms  1888  sbcom  2029  a12stdy2  29127
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
  Copyright terms: Public domain W3C validator