MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aev-o Structured version   Unicode version

Theorem aev-o 2260
Description: A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-16 2222. Version of aev 2048 using ax-10o 2217. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
aev-o  |-  ( A. x  x  =  y  ->  A. z  w  =  v )
Distinct variable group:    x, y

Proof of Theorem aev-o
Dummy variables  u  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbae-o 2231 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
2 hbae-o 2231 . . . 4  |-  ( A. x  x  =  y  ->  A. t A. x  x  =  y )
3 ax-8 1688 . . . . 5  |-  ( x  =  t  ->  (
x  =  y  -> 
t  =  y ) )
43spimv 1964 . . . 4  |-  ( A. x  x  =  y  ->  t  =  y )
52, 4alrimih 1575 . . 3  |-  ( A. x  x  =  y  ->  A. t  t  =  y )
6 ax-8 1688 . . . . . . . 8  |-  ( y  =  u  ->  (
y  =  t  ->  u  =  t )
)
7 equcomi 1692 . . . . . . . 8  |-  ( u  =  t  ->  t  =  u )
86, 7syl6 32 . . . . . . 7  |-  ( y  =  u  ->  (
y  =  t  -> 
t  =  u ) )
98spimv 1964 . . . . . 6  |-  ( A. y  y  =  t  ->  t  =  u )
109aecoms-o 2230 . . . . 5  |-  ( A. t  t  =  y  ->  t  =  u )
1110a5i-o 2228 . . . 4  |-  ( A. t  t  =  y  ->  A. t  t  =  u )
12 hbae-o 2231 . . . . 5  |-  ( A. t  t  =  u  ->  A. v A. t 
t  =  u )
13 ax-8 1688 . . . . . 6  |-  ( t  =  v  ->  (
t  =  u  -> 
v  =  u ) )
1413spimv 1964 . . . . 5  |-  ( A. t  t  =  u  ->  v  =  u )
1512, 14alrimih 1575 . . . 4  |-  ( A. t  t  =  u  ->  A. v  v  =  u )
16 aecom-o 2229 . . . 4  |-  ( A. v  v  =  u  ->  A. u  u  =  v )
1711, 15, 163syl 19 . . 3  |-  ( A. t  t  =  y  ->  A. u  u  =  v )
18 ax-8 1688 . . . 4  |-  ( u  =  w  ->  (
u  =  v  ->  w  =  v )
)
1918spimv 1964 . . 3  |-  ( A. u  u  =  v  ->  w  =  v )
205, 17, 193syl 19 . 2  |-  ( A. x  x  =  y  ->  w  =  v )
211, 20alrimih 1575 1  |-  ( A. x  x  =  y  ->  A. z  w  =  v )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550
This theorem is referenced by:  a16g-o  2264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-4 2213  ax-5o 2214  ax-6o 2215  ax-10o 2217  ax-12o 2220
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator