Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvpcfv0 Structured version   Unicode version

Theorem afvpcfv0 27986
Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvpcfv0  |-  ( ( F''' A )  =  _V  ->  ( F `  A
)  =  (/) )

Proof of Theorem afvpcfv0
StepHypRef Expression
1 dfafv2 27972 . . 3  |-  ( F''' A )  =  if ( F defAt  A , 
( F `  A
) ,  _V )
21eqeq1i 2443 . 2  |-  ( ( F''' A )  =  _V  <->  if ( F defAt  A , 
( F `  A
) ,  _V )  =  _V )
3 eqcom 2438 . . . 4  |-  ( if ( F defAt  A , 
( F `  A
) ,  _V )  =  _V  <->  _V  =  if ( F defAt  A ,  ( F `  A ) ,  _V ) )
4 eqif 3772 . . . 4  |-  ( _V  =  if ( F defAt 
A ,  ( F `
 A ) ,  _V )  <->  ( ( F defAt  A  /\  _V  =  ( F `  A ) )  \/  ( -.  F defAt  A  /\  _V  =  _V ) ) )
53, 4bitri 241 . . 3  |-  ( if ( F defAt  A , 
( F `  A
) ,  _V )  =  _V  <->  ( ( F defAt 
A  /\  _V  =  ( F `  A ) )  \/  ( -.  F defAt  A  /\  _V  =  _V ) ) )
6 fveqvfvv 27964 . . . . . 6  |-  ( ( F `  A )  =  _V  ->  ( F `  A )  =  (/) )
76eqcoms 2439 . . . . 5  |-  ( _V  =  ( F `  A )  ->  ( F `  A )  =  (/) )
87adantl 453 . . . 4  |-  ( ( F defAt  A  /\  _V  =  ( F `  A ) )  -> 
( F `  A
)  =  (/) )
9 fvfundmfvn0 5762 . . . . . . 7  |-  ( ( F `  A )  =/=  (/)  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) )
10 df-dfat 27950 . . . . . . 7  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
119, 10sylibr 204 . . . . . 6  |-  ( ( F `  A )  =/=  (/)  ->  F defAt  A )
1211necon1bi 2647 . . . . 5  |-  ( -.  F defAt  A  ->  ( F `  A )  =  (/) )
1312adantr 452 . . . 4  |-  ( ( -.  F defAt  A  /\  _V  =  _V )  ->  ( F `  A
)  =  (/) )
148, 13jaoi 369 . . 3  |-  ( ( ( F defAt  A  /\  _V  =  ( F `  A ) )  \/  ( -.  F defAt  A  /\  _V  =  _V )
)  ->  ( F `  A )  =  (/) )
155, 14sylbi 188 . 2  |-  ( if ( F defAt  A , 
( F `  A
) ,  _V )  =  _V  ->  ( F `  A )  =  (/) )
162, 15sylbi 188 1  |-  ( ( F''' A )  =  _V  ->  ( F `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   _Vcvv 2956   (/)c0 3628   ifcif 3739   {csn 3814   dom cdm 4878    |` cres 4880   Fun wfun 5448   ` cfv 5454   defAt wdfat 27947  '''cafv 27948
This theorem is referenced by:  afvfv0bi  27992  aovpcov0  28030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-res 4890  df-iota 5418  df-fun 5456  df-fv 5462  df-dfat 27950  df-afv 27951
  Copyright terms: Public domain W3C validator