Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvres Unicode version

Theorem afvres 28034
Description: The value of a restricted function, analogous to fvres 5542. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
afvres  |-  ( A  e.  B  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )

Proof of Theorem afvres
StepHypRef Expression
1 elin 3358 . . . . . . . . 9  |-  ( A  e.  ( B  i^i  dom 
F )  <->  ( A  e.  B  /\  A  e. 
dom  F ) )
21biimpri 197 . . . . . . . 8  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  A  e.  ( B  i^i  dom  F
) )
3 dmres 4976 . . . . . . . 8  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
42, 3syl6eleqr 2374 . . . . . . 7  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  A  e.  dom  ( F  |`  B ) )
54ex 423 . . . . . 6  |-  ( A  e.  B  ->  ( A  e.  dom  F  ->  A  e.  dom  ( F  |`  B ) ) )
6 snssi 3759 . . . . . . . . . 10  |-  ( A  e.  B  ->  { A }  C_  B )
7 resabs1 4984 . . . . . . . . . 10  |-  ( { A }  C_  B  ->  ( ( F  |`  B )  |`  { A } )  =  ( F  |`  { A } ) )
86, 7syl 15 . . . . . . . . 9  |-  ( A  e.  B  ->  (
( F  |`  B )  |`  { A } )  =  ( F  |`  { A } ) )
98eqcomd 2288 . . . . . . . 8  |-  ( A  e.  B  ->  ( F  |`  { A }
)  =  ( ( F  |`  B )  |` 
{ A } ) )
109funeqd 5276 . . . . . . 7  |-  ( A  e.  B  ->  ( Fun  ( F  |`  { A } )  <->  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
1110biimpd 198 . . . . . 6  |-  ( A  e.  B  ->  ( Fun  ( F  |`  { A } )  ->  Fun  ( ( F  |`  B )  |`  { A } ) ) )
125, 11anim12d 546 . . . . 5  |-  ( A  e.  B  ->  (
( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) ) )
1312impcom 419 . . . 4  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) )
14 df-dfat 27974 . . . . 5  |-  ( ( F  |`  B ) defAt  A  <-> 
( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
15 afvfundmfveq 28001 . . . . 5  |-  ( ( F  |`  B ) defAt  A  ->  ( ( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
1614, 15sylbir 204 . . . 4  |-  ( ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) )  -> 
( ( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
1713, 16syl 15 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
18 fvres 5542 . . . 4  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
1918adantl 452 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
20 df-dfat 27974 . . . . . 6  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
21 afvfundmfveq 28001 . . . . . 6  |-  ( F defAt 
A  ->  ( F''' A )  =  ( F `
 A ) )
2220, 21sylbir 204 . . . . 5  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  ( F `  A ) )
2322eqcomd 2288 . . . 4  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F `  A )  =  ( F''' A ) )
2423adantr 451 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  ( F `  A )  =  ( F''' A ) )
2517, 19, 243eqtrd 2319 . 2  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
26 pm3.4 544 . . . . . . . . . 10  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
271, 26sylbi 187 . . . . . . . . 9  |-  ( A  e.  ( B  i^i  dom 
F )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
2827, 3eleq2s 2375 . . . . . . . 8  |-  ( A  e.  dom  ( F  |`  B )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
2928com12 27 . . . . . . 7  |-  ( A  e.  B  ->  ( A  e.  dom  ( F  |`  B )  ->  A  e.  dom  F ) )
308funeqd 5276 . . . . . . . 8  |-  ( A  e.  B  ->  ( Fun  ( ( F  |`  B )  |`  { A } )  <->  Fun  ( F  |`  { A } ) ) )
3130biimpd 198 . . . . . . 7  |-  ( A  e.  B  ->  ( Fun  ( ( F  |`  B )  |`  { A } )  ->  Fun  ( F  |`  { A } ) ) )
3229, 31anim12d 546 . . . . . 6  |-  ( A  e.  B  ->  (
( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) )  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) ) )
3332con3d 125 . . . . 5  |-  ( A  e.  B  ->  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) ) )
3433impcom 419 . . . 4  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
35 afvnfundmuv 28002 . . . . 5  |-  ( -.  ( F  |`  B ) defAt 
A  ->  ( ( F  |`  B )''' A )  =  _V )
3614, 35sylnbir 298 . . . 4  |-  ( -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) )  ->  ( ( F  |`  B )''' A )  =  _V )
3734, 36syl 15 . . 3  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  _V )
38 afvnfundmuv 28002 . . . . . 6  |-  ( -.  F defAt  A  ->  ( F''' A )  =  _V )
3920, 38sylnbir 298 . . . . 5  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  _V )
4039eqcomd 2288 . . . 4  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  _V  =  ( F''' A ) )
4140adantr 451 . . 3  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  _V  =  ( F''' A ) )
4237, 41eqtrd 2315 . 2  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
4325, 42pm2.61ian 765 1  |-  ( A  e.  B  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    i^i cin 3151    C_ wss 3152   {csn 3640   dom cdm 4689    |` cres 4691   Fun wfun 5249   ` cfv 5255   defAt wdfat 27971  '''cafv 27972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-dfat 27974  df-afv 27975
  Copyright terms: Public domain W3C validator