Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvres Unicode version

Theorem afvres 27360
Description: The value of a restricted function, analogous to fvres 5622. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
afvres  |-  ( A  e.  B  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )

Proof of Theorem afvres
StepHypRef Expression
1 elin 3434 . . . . . . . . 9  |-  ( A  e.  ( B  i^i  dom 
F )  <->  ( A  e.  B  /\  A  e. 
dom  F ) )
21biimpri 197 . . . . . . . 8  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  A  e.  ( B  i^i  dom  F
) )
3 dmres 5055 . . . . . . . 8  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
42, 3syl6eleqr 2449 . . . . . . 7  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  A  e.  dom  ( F  |`  B ) )
54ex 423 . . . . . 6  |-  ( A  e.  B  ->  ( A  e.  dom  F  ->  A  e.  dom  ( F  |`  B ) ) )
6 snssi 3838 . . . . . . . . . 10  |-  ( A  e.  B  ->  { A }  C_  B )
7 resabs1 5063 . . . . . . . . . 10  |-  ( { A }  C_  B  ->  ( ( F  |`  B )  |`  { A } )  =  ( F  |`  { A } ) )
86, 7syl 15 . . . . . . . . 9  |-  ( A  e.  B  ->  (
( F  |`  B )  |`  { A } )  =  ( F  |`  { A } ) )
98eqcomd 2363 . . . . . . . 8  |-  ( A  e.  B  ->  ( F  |`  { A }
)  =  ( ( F  |`  B )  |` 
{ A } ) )
109funeqd 5355 . . . . . . 7  |-  ( A  e.  B  ->  ( Fun  ( F  |`  { A } )  <->  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
1110biimpd 198 . . . . . 6  |-  ( A  e.  B  ->  ( Fun  ( F  |`  { A } )  ->  Fun  ( ( F  |`  B )  |`  { A } ) ) )
125, 11anim12d 546 . . . . 5  |-  ( A  e.  B  ->  (
( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) ) )
1312impcom 419 . . . 4  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) )
14 df-dfat 27297 . . . . 5  |-  ( ( F  |`  B ) defAt  A  <-> 
( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
15 afvfundmfveq 27326 . . . . 5  |-  ( ( F  |`  B ) defAt  A  ->  ( ( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
1614, 15sylbir 204 . . . 4  |-  ( ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) )  -> 
( ( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
1713, 16syl 15 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( ( F  |`  B ) `
 A ) )
18 fvres 5622 . . . 4  |-  ( A  e.  B  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
1918adantl 452 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B ) `
 A )  =  ( F `  A
) )
20 df-dfat 27297 . . . . . 6  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
21 afvfundmfveq 27326 . . . . . 6  |-  ( F defAt 
A  ->  ( F''' A )  =  ( F `
 A ) )
2220, 21sylbir 204 . . . . 5  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  ( F `  A ) )
2322eqcomd 2363 . . . 4  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F `  A )  =  ( F''' A ) )
2423adantr 451 . . 3  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  ( F `  A )  =  ( F''' A ) )
2517, 19, 243eqtrd 2394 . 2  |-  ( ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
26 pm3.4 544 . . . . . . . . . 10  |-  ( ( A  e.  B  /\  A  e.  dom  F )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
271, 26sylbi 187 . . . . . . . . 9  |-  ( A  e.  ( B  i^i  dom 
F )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
2827, 3eleq2s 2450 . . . . . . . 8  |-  ( A  e.  dom  ( F  |`  B )  ->  ( A  e.  B  ->  A  e.  dom  F ) )
2928com12 27 . . . . . . 7  |-  ( A  e.  B  ->  ( A  e.  dom  ( F  |`  B )  ->  A  e.  dom  F ) )
308funeqd 5355 . . . . . . . 8  |-  ( A  e.  B  ->  ( Fun  ( ( F  |`  B )  |`  { A } )  <->  Fun  ( F  |`  { A } ) ) )
3130biimpd 198 . . . . . . 7  |-  ( A  e.  B  ->  ( Fun  ( ( F  |`  B )  |`  { A } )  ->  Fun  ( F  |`  { A } ) ) )
3229, 31anim12d 546 . . . . . 6  |-  ( A  e.  B  ->  (
( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) )  ->  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) ) ) )
3332con3d 125 . . . . 5  |-  ( A  e.  B  ->  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |`  { A } ) ) ) )
3433impcom 419 . . . 4  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) ) )
35 afvnfundmuv 27327 . . . . 5  |-  ( -.  ( F  |`  B ) defAt 
A  ->  ( ( F  |`  B )''' A )  =  _V )
3614, 35sylnbir 298 . . . 4  |-  ( -.  ( A  e.  dom  ( F  |`  B )  /\  Fun  ( ( F  |`  B )  |` 
{ A } ) )  ->  ( ( F  |`  B )''' A )  =  _V )
3734, 36syl 15 . . 3  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  _V )
38 afvnfundmuv 27327 . . . . . 6  |-  ( -.  F defAt  A  ->  ( F''' A )  =  _V )
3920, 38sylnbir 298 . . . . 5  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  ( F''' A )  =  _V )
4039eqcomd 2363 . . . 4  |-  ( -.  ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  ->  _V  =  ( F''' A ) )
4140adantr 451 . . 3  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  _V  =  ( F''' A ) )
4237, 41eqtrd 2390 . 2  |-  ( ( -.  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) )  /\  A  e.  B )  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
4325, 42pm2.61ian 765 1  |-  ( A  e.  B  ->  (
( F  |`  B )''' A )  =  ( F''' A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864    i^i cin 3227    C_ wss 3228   {csn 3716   dom cdm 4768    |` cres 4770   Fun wfun 5328   ` cfv 5334   defAt wdfat 27294  '''cafv 27295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-res 4780  df-iota 5298  df-fun 5336  df-fv 5342  df-dfat 27297  df-afv 27298
  Copyright terms: Public domain W3C validator