Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aiffbbtat Structured version   Unicode version

Theorem aiffbbtat 27859
Description: Given a is equivalent to b, b is equivalent to T. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
Hypotheses
Ref Expression
aiffbbtat.1  |-  ( ph  <->  ps )
aiffbbtat.2  |-  ( ps  <->  T.  )
Assertion
Ref Expression
aiffbbtat  |-  ( ph  <->  T.  )

Proof of Theorem aiffbbtat
StepHypRef Expression
1 aiffbbtat.1 . 2  |-  ( ph  <->  ps )
2 aiffbbtat.2 . 2  |-  ( ps  <->  T.  )
31, 2bitri 242 1  |-  ( ph  <->  T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 178    T. wtru 1326
This theorem is referenced by:  dandysum2p2e4  27933  mdandysum2p2e4  27934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 179
  Copyright terms: Public domain W3C validator