Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aisbbisfaisf Unicode version

Theorem aisbbisfaisf 27973
Description: Given a is equivalent to b, b is equivalent to F. there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.)
Hypotheses
Ref Expression
aisbbisfaisf.1  |-  ( ph  <->  ps )
aisbbisfaisf.2  |-  ( ps  <->  F.  )
Assertion
Ref Expression
aisbbisfaisf  |-  ( ph  <->  F.  )

Proof of Theorem aisbbisfaisf
StepHypRef Expression
1 aisbbisfaisf.1 . . 3  |-  ( ph  <->  ps )
2 aisbbisfaisf.2 . . 3  |-  ( ps  <->  F.  )
31, 2pm3.2i 441 . 2  |-  ( (
ph 
<->  ps )  /\  ( ps 
<->  F.  ) )
4 bitr 689 . 2  |-  ( ( ( ph  <->  ps )  /\  ( ps  <->  F.  )
)  ->  ( ph  <->  F.  ) )
53, 4ax-mp 8 1  |-  ( ph  <->  F.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    F. wfal 1308
This theorem is referenced by:  aibnbna  27977  mdandysum2p2e4  28047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator