Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aisfina Structured version   Unicode version

Theorem aisfina 27844
Description: Given a is equivalent to F., there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016.)
Hypothesis
Ref Expression
aisfina.1  |-  ( ph  <->  F.  )
Assertion
Ref Expression
aisfina  |-  -.  ph

Proof of Theorem aisfina
StepHypRef Expression
1 aisfina.1 . 2  |-  ( ph  <->  F.  )
2 nbfal 1335 . 2  |-  ( -. 
ph 
<->  ( ph  <->  F.  )
)
31, 2mpbir 202 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 178    F. wfal 1327
This theorem is referenced by:  aistbisfiaxb  27866  aisfbistiaxb  27867  dandysum2p2e4  27921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 179  df-tru 1329  df-fal 1330
  Copyright terms: Public domain W3C validator