Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aistbistaandb Unicode version

Theorem aistbistaandb 27878
Description: Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for (a and b). (Contributed by Jarvin Udandy, 9-Sep-2016.)
Hypotheses
Ref Expression
aistbistaandb.1  |-  ( ph  <->  T.  )
aistbistaandb.2  |-  ( ps  <->  T.  )
Assertion
Ref Expression
aistbistaandb  |-  ( ph  /\ 
ps )

Proof of Theorem aistbistaandb
StepHypRef Expression
1 aistbistaandb.1 . . 3  |-  ( ph  <->  T.  )
21aistia 27865 . 2  |-  ph
3 aistbistaandb.2 . . 3  |-  ( ps  <->  T.  )
43aistia 27865 . 2  |-  ps
52, 4pm3.2i 441 1  |-  ( ph  /\ 
ps )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    T. wtru 1307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310
  Copyright terms: Public domain W3C validator