Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aistia Unicode version

Theorem aistia 27740
Description: Given a is equivalent to T., there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.)
Hypothesis
Ref Expression
aistia.1  |-  ( ph  <->  T.  )
Assertion
Ref Expression
aistia  |-  ph

Proof of Theorem aistia
StepHypRef Expression
1 aistia.1 . 2  |-  ( ph  <->  T.  )
2 tbtru 1330 . 2  |-  ( ph  <->  (
ph 
<->  T.  ) )
31, 2mpbir 201 1  |-  ph
Colors of variables: wff set class
Syntax hints:    <-> wb 177    T. wtru 1322
This theorem is referenced by:  astbstanbst  27752  aistbistaandb  27753  aistbisfiaxb  27763  aisfbistiaxb  27764  dandysum2p2e4  27818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-tru 1325
  Copyright terms: Public domain W3C validator