MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alanimi Unicode version

Theorem alanimi 1549
Description: Variant of al2imi 1548 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
alanimi.1  |-  ( (
ph  /\  ps )  ->  ch )
Assertion
Ref Expression
alanimi  |-  ( ( A. x ph  /\  A. x ps )  ->  A. x ch )

Proof of Theorem alanimi
StepHypRef Expression
1 alanimi.1 . . . 4  |-  ( (
ph  /\  ps )  ->  ch )
21ex 423 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
32al2imi 1548 . 2  |-  ( A. x ph  ->  ( A. x ps  ->  A. x ch ) )
43imp 418 1  |-  ( ( A. x ph  /\  A. x ps )  ->  A. x ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527
This theorem is referenced by:  19.26  1580  alsyl  1602  vtoclgft  2834  euind  2952  reuind  2968  sbeqalb  3043  bm1.3ii  4144  trin2  5066  albitr  27558  2alanimi  27567
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544
This theorem depends on definitions:  df-bi 177  df-an 360
  Copyright terms: Public domain W3C validator