MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albidh Structured version   Unicode version

Theorem albidh 1600
Description: Formula-building rule for universal quantifier (deduction rule). (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
albidh.1  |-  ( ph  ->  A. x ph )
albidh.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
albidh  |-  ( ph  ->  ( A. x ps  <->  A. x ch ) )

Proof of Theorem albidh
StepHypRef Expression
1 albidh.1 . . 3  |-  ( ph  ->  A. x ph )
2 albidh.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
31, 2alrimih 1574 . 2  |-  ( ph  ->  A. x ( ps  <->  ch ) )
4 albi 1573 . 2  |-  ( A. x ( ps  <->  ch )  ->  ( A. x ps  <->  A. x ch ) )
53, 4syl 16 1  |-  ( ph  ->  ( A. x ps  <->  A. x ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549
This theorem is referenced by:  albidv  1635  albid  1788  ax10lem4OLD  2030  ax9OLD  2033  dral2OLD  2056  dral2-o  2258  ax11indalem  2274  ax11inda2ALT  2275  ax11inda  2277  ax9NEW7  29468  ax10lem4NEW7  29471  dral2wAUX7  29496  dral2w2AUX7  29499  dral2OLD7  29714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566
This theorem depends on definitions:  df-bi 178
  Copyright terms: Public domain W3C validator