Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alcomiw Structured version   Unicode version

Theorem alcomiw 1719
 Description: Weak version of alcom 1753. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.)
Hypothesis
Ref Expression
alcomiw.1
Assertion
Ref Expression
alcomiw
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem alcomiw
StepHypRef Expression
1 alcomiw.1 . . . . 5
21biimpd 200 . . . 4
32cbvalivw 1687 . . 3
43alimi 1569 . 2
5 ax-17 1627 . 2
61biimprd 216 . . . . . 6
76equcoms 1694 . . . . 5
87spimvw 1682 . . . 4
98alimi 1569 . . 3
109alimi 1569 . 2
114, 5, 103syl 19 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550 This theorem is referenced by:  hbalw  1725  ax7w  1734 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552
 Copyright terms: Public domain W3C validator