MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephdom2 Structured version   Unicode version

Theorem alephdom2 7973
Description: A dominated initial ordinal is included. (Contributed by Jeff Hankins, 24-Oct-2009.)
Assertion
Ref Expression
alephdom2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  C_  B  <->  ( aleph `  A )  ~<_  B ) )

Proof of Theorem alephdom2
StepHypRef Expression
1 alephsdom 7972 . . . 4  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  e.  (
aleph `  A )  <->  B  ~<  (
aleph `  A ) ) )
21ancoms 441 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  e.  (
aleph `  A )  <->  B  ~<  (
aleph `  A ) ) )
32notbid 287 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  B  e.  ( aleph `  A )  <->  -.  B  ~<  ( aleph `  A ) ) )
4 alephon 7955 . . . . 5  |-  ( aleph `  A )  e.  On
54onordi 4689 . . . 4  |-  Ord  ( aleph `  A )
6 eloni 4594 . . . 4  |-  ( B  e.  On  ->  Ord  B )
7 ordtri1 4617 . . . 4  |-  ( ( Ord  ( aleph `  A
)  /\  Ord  B )  ->  ( ( aleph `  A )  C_  B  <->  -.  B  e.  ( aleph `  A ) ) )
85, 6, 7sylancr 646 . . 3  |-  ( B  e.  On  ->  (
( aleph `  A )  C_  B  <->  -.  B  e.  ( aleph `  A )
) )
98adantl 454 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  C_  B  <->  -.  B  e.  ( aleph `  A )
) )
10 domtriord 7256 . . . 4  |-  ( ( ( aleph `  A )  e.  On  /\  B  e.  On )  ->  (
( aleph `  A )  ~<_  B 
<->  -.  B  ~<  ( aleph `  A ) ) )
114, 10mpan 653 . . 3  |-  ( B  e.  On  ->  (
( aleph `  A )  ~<_  B 
<->  -.  B  ~<  ( aleph `  A ) ) )
1211adantl 454 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  ~<_  B  <->  -.  B  ~<  ( aleph `  A )
) )
133, 9, 123bitr4d 278 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  C_  B  <->  ( aleph `  A )  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726    C_ wss 3322   class class class wbr 4215   Ord word 4583   Oncon0 4584   ` cfv 5457    ~<_ cdom 7110    ~< csdm 7111   alephcale 7828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-oi 7482  df-har 7529  df-card 7831  df-aleph 7832
  Copyright terms: Public domain W3C validator