MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephf1ALT Unicode version

Theorem alephf1ALT 7730
Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. (Contributed by by Mario Carneiro, 15-Mar-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
alephf1ALT  |-  aleph : On -1-1-> On

Proof of Theorem alephf1ALT
StepHypRef Expression
1 alephfnon 7692 . . 3  |-  aleph  Fn  On
2 alephon 7696 . . . . 5  |-  ( aleph `  x )  e.  On
32a1i 10 . . . 4  |-  ( x  e.  On  ->  ( aleph `  x )  e.  On )
43rgen 2608 . . 3  |-  A. x  e.  On  ( aleph `  x
)  e.  On
5 ffnfv 5685 . . 3  |-  ( aleph : On --> On  <->  ( aleph  Fn  On  /\  A. x  e.  On  ( aleph `  x
)  e.  On ) )
61, 4, 5mpbir2an 886 . 2  |-  aleph : On --> On
7 alephsmo 7729 . 2  |-  Smo  aleph
8 smo11 6381 . 2  |-  ( (
aleph : On --> On  /\  Smo  aleph )  ->  aleph : On -1-1-> On )
96, 7, 8mp2an 653 1  |-  aleph : On -1-1-> On
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   A.wral 2543   Oncon0 4392    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   ` cfv 5255   Smo wsmo 6362   alephcale 7569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-smo 6363  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-har 7272  df-card 7572  df-aleph 7573
  Copyright terms: Public domain W3C validator