MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephgch Unicode version

Theorem alephgch 8300
Description: If  ( aleph `  suc  A ) is equinumerous to the powerset of  ( aleph `  A
), then  ( aleph `  A
) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephgch  |-  ( (
aleph `  suc  A ) 
~~  ~P ( aleph `  A
)  ->  ( aleph `  A )  e. GCH )

Proof of Theorem alephgch
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 alephnbtwn2 7699 . . . . 5  |-  -.  (
( aleph `  A )  ~<  x  /\  x  ~<  (
aleph `  suc  A ) )
2 sdomen2 7006 . . . . . 6  |-  ( (
aleph `  suc  A ) 
~~  ~P ( aleph `  A
)  ->  ( x  ~<  ( aleph `  suc  A )  <-> 
x  ~<  ~P ( aleph `  A ) ) )
32anbi2d 684 . . . . 5  |-  ( (
aleph `  suc  A ) 
~~  ~P ( aleph `  A
)  ->  ( (
( aleph `  A )  ~<  x  /\  x  ~<  (
aleph `  suc  A ) )  <->  ( ( aleph `  A )  ~<  x  /\  x  ~<  ~P ( aleph `  A ) ) ) )
41, 3mtbii 293 . . . 4  |-  ( (
aleph `  suc  A ) 
~~  ~P ( aleph `  A
)  ->  -.  (
( aleph `  A )  ~<  x  /\  x  ~<  ~P ( aleph `  A )
) )
54alrimiv 1617 . . 3  |-  ( (
aleph `  suc  A ) 
~~  ~P ( aleph `  A
)  ->  A. x  -.  ( ( aleph `  A
)  ~<  x  /\  x  ~<  ~P ( aleph `  A
) ) )
65olcd 382 . 2  |-  ( (
aleph `  suc  A ) 
~~  ~P ( aleph `  A
)  ->  ( ( aleph `  A )  e. 
Fin  \/  A. x  -.  ( ( aleph `  A
)  ~<  x  /\  x  ~<  ~P ( aleph `  A
) ) ) )
7 fvex 5539 . . 3  |-  ( aleph `  A )  e.  _V
8 elgch 8244 . . 3  |-  ( (
aleph `  A )  e. 
_V  ->  ( ( aleph `  A )  e. GCH  <->  ( ( aleph `  A )  e. 
Fin  \/  A. x  -.  ( ( aleph `  A
)  ~<  x  /\  x  ~<  ~P ( aleph `  A
) ) ) ) )
97, 8ax-mp 8 . 2  |-  ( (
aleph `  A )  e. GCH  <->  ( ( aleph `  A )  e.  Fin  \/  A. x  -.  ( ( aleph `  A
)  ~<  x  /\  x  ~<  ~P ( aleph `  A
) ) ) )
106, 9sylibr 203 1  |-  ( (
aleph `  suc  A ) 
~~  ~P ( aleph `  A
)  ->  ( aleph `  A )  e. GCH )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1527    e. wcel 1684   _Vcvv 2788   ~Pcpw 3625   class class class wbr 4023   suc csuc 4394   ` cfv 5255    ~~ cen 6860    ~< csdm 6862   Fincfn 6863   alephcale 7569  GCHcgch 8242
This theorem is referenced by:  gch3  8302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-har 7272  df-card 7572  df-aleph 7573  df-gch 8243
  Copyright terms: Public domain W3C validator