MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephiso Unicode version

Theorem alephiso 7725
Description: Aleph is an order isomorphism of the class of ordinal numbers onto the class of infinite cardinals. Definition 10.27 of [TakeutiZaring] p. 90. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
alephiso  |-  aleph  Isom  _E  ,  _E  ( On ,  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } )

Proof of Theorem alephiso
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 7692 . . . . . 6  |-  aleph  Fn  On
2 isinfcard 7719 . . . . . . . 8  |-  ( ( om  C_  x  /\  ( card `  x )  =  x )  <->  x  e.  ran  aleph )
32bicomi 193 . . . . . . 7  |-  ( x  e.  ran  aleph  <->  ( om  C_  x  /\  ( card `  x )  =  x ) )
43abbi2i 2394 . . . . . 6  |-  ran  aleph  =  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
5 df-fo 5261 . . . . . 6  |-  ( aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph  Fn  On  /\  ran  aleph  =  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } ) )
61, 4, 5mpbir2an 886 . . . . 5  |-  aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
7 fof 5451 . . . . 5  |-  ( aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  ->  aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) } )
86, 7ax-mp 8 . . . 4  |-  aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
9 aleph11 7711 . . . . . 6  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( ( aleph `  y
)  =  ( aleph `  z )  <->  y  =  z ) )
109biimpd 198 . . . . 5  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( ( aleph `  y
)  =  ( aleph `  z )  ->  y  =  z ) )
1110rgen2a 2609 . . . 4  |-  A. y  e.  On  A. z  e.  On  ( ( aleph `  y )  =  (
aleph `  z )  -> 
y  =  z )
12 dff13 5783 . . . 4  |-  ( aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph : On --> { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) }  /\  A. y  e.  On  A. z  e.  On  ( ( aleph `  y )  =  (
aleph `  z )  -> 
y  =  z ) ) )
138, 11, 12mpbir2an 886 . . 3  |-  aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
14 df-f1o 5262 . . 3  |-  ( aleph : On -1-1-onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  <->  ( aleph : On -1-1-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  /\  aleph : On -onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } ) )
1513, 6, 14mpbir2an 886 . 2  |-  aleph : On -1-1-onto-> {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }
16 alephord2 7703 . . . 4  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( y  e.  z  <-> 
( aleph `  y )  e.  ( aleph `  z )
) )
17 epel 4308 . . . 4  |-  ( y  _E  z  <->  y  e.  z )
18 fvex 5539 . . . . 5  |-  ( aleph `  z )  e.  _V
1918epelc 4307 . . . 4  |-  ( (
aleph `  y )  _E  ( aleph `  z )  <->  (
aleph `  y )  e.  ( aleph `  z )
)
2016, 17, 193bitr4g 279 . . 3  |-  ( ( y  e.  On  /\  z  e.  On )  ->  ( y  _E  z  <->  (
aleph `  y )  _E  ( aleph `  z )
) )
2120rgen2a 2609 . 2  |-  A. y  e.  On  A. z  e.  On  ( y  _E  z  <->  ( aleph `  y
)  _E  ( aleph `  z ) )
22 df-isom 5264 . 2  |-  ( aleph  Isom 
_E  ,  _E  ( On ,  { x  |  ( om  C_  x  /\  ( card `  x
)  =  x ) } )  <->  ( aleph : On -1-1-onto-> { x  |  ( om  C_  x  /\  ( card `  x )  =  x ) }  /\  A. y  e.  On  A. z  e.  On  (
y  _E  z  <->  ( aleph `  y )  _E  ( aleph `  z ) ) ) )
2315, 21, 22mpbir2an 886 1  |-  aleph  Isom  _E  ,  _E  ( On ,  {
x  |  ( om  C_  x  /\  ( card `  x )  =  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543    C_ wss 3152   class class class wbr 4023    _E cep 4303   Oncon0 4392   omcom 4656   ran crn 4690    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255    Isom wiso 5256   cardccrd 7568   alephcale 7569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-har 7272  df-card 7572  df-aleph 7573
  Copyright terms: Public domain W3C validator