Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephle Unicode version

Theorem alephle 7731
 Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 7752, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.)
Assertion
Ref Expression
alephle

Proof of Theorem alephle
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3
2 fveq2 5541 . . 3
31, 2sseq12d 3220 . 2
4 id 19 . . 3
5 fveq2 5541 . . 3
64, 5sseq12d 3220 . 2
7 alephord2i 7720 . . . . . 6
87imp 418 . . . . 5
9 onelon 4433 . . . . . 6
10 alephon 7712 . . . . . 6
11 ontr2 4455 . . . . . 6
129, 10, 11sylancl 643 . . . . 5
138, 12mpan2d 655 . . . 4
1413ralimdva 2634 . . 3
1510onirri 4515 . . . . 5
16 eleq1 2356 . . . . . 6
1716rspccv 2894 . . . . 5
1815, 17mtoi 169 . . . 4
19 ontri1 4442 . . . . 5
2010, 19mpan2 652 . . . 4
2118, 20syl5ibr 212 . . 3
2214, 21syld 40 . 2
233, 6, 22tfis3 4664 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 176   wa 358   wceq 1632   wcel 1696  wral 2556   wss 3165  con0 4408  cfv 5271  cale 7585 This theorem is referenced by:  cardaleph  7732  alephfp  7751  winafp  8335 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-card 7588  df-aleph 7589
 Copyright terms: Public domain W3C validator