MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephlim Unicode version

Theorem alephlim 7710
Description: Value of the aleph function at a limit ordinal. Definition 12(iii) of [Suppes] p. 91. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 13-Sep-2013.)
Assertion
Ref Expression
alephlim  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ x  e.  A  ( aleph `  x )
)
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem alephlim
StepHypRef Expression
1 rdglim2a 6462 . 2  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( rec (har ,  om ) `  A )  =  U_ x  e.  A  ( rec (har ,  om ) `  x ) )
2 df-aleph 7589 . . 3  |-  aleph  =  rec (har ,  om )
32fveq1i 5542 . 2  |-  ( aleph `  A )  =  ( rec (har ,  om ) `  A )
42fveq1i 5542 . . . 4  |-  ( aleph `  x )  =  ( rec (har ,  om ) `  x )
54a1i 10 . . 3  |-  ( x  e.  A  ->  ( aleph `  x )  =  ( rec (har ,  om ) `  x ) )
65iuneq2i 3939 . 2  |-  U_ x  e.  A  ( aleph `  x )  =  U_ x  e.  A  ( rec (har ,  om ) `  x )
71, 3, 63eqtr4g 2353 1  |-  ( ( A  e.  V  /\  Lim  A )  ->  ( aleph `  A )  = 
U_ x  e.  A  ( aleph `  x )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   U_ciun 3921   Lim wlim 4409   omcom 4672   ` cfv 5271   reccrdg 6438  harchar 7286   alephcale 7585
This theorem is referenced by:  alephon  7712  alephcard  7713  alephordi  7717  cardaleph  7732  alephsing  7918  pwcfsdom  8221
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-aleph 7589
  Copyright terms: Public domain W3C validator