MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephnbtwn2 Structured version   Unicode version

Theorem alephnbtwn2 7945
Description: No set has equinumerosity between an aleph and its successor aleph. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephnbtwn2  |-  -.  (
( aleph `  A )  ~<  B  /\  B  ~<  (
aleph `  suc  A ) )

Proof of Theorem alephnbtwn2
StepHypRef Expression
1 cardidm 7838 . . 3  |-  ( card `  ( card `  B
) )  =  (
card `  B )
2 alephnbtwn 7944 . . 3  |-  ( (
card `  ( card `  B ) )  =  ( card `  B
)  ->  -.  (
( aleph `  A )  e.  ( card `  B
)  /\  ( card `  B )  e.  (
aleph `  suc  A ) ) )
31, 2ax-mp 8 . 2  |-  -.  (
( aleph `  A )  e.  ( card `  B
)  /\  ( card `  B )  e.  (
aleph `  suc  A ) )
4 alephon 7942 . . . . . . . 8  |-  ( aleph ` 
suc  A )  e.  On
5 sdomdom 7127 . . . . . . . 8  |-  ( B 
~<  ( aleph `  suc  A )  ->  B  ~<_  ( aleph ` 
suc  A ) )
6 ondomen 7910 . . . . . . . 8  |-  ( ( ( aleph `  suc  A )  e.  On  /\  B  ~<_  ( aleph `  suc  A ) )  ->  B  e.  dom  card )
74, 5, 6sylancr 645 . . . . . . 7  |-  ( B 
~<  ( aleph `  suc  A )  ->  B  e.  dom  card )
8 cardid2 7832 . . . . . . 7  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
97, 8syl 16 . . . . . 6  |-  ( B 
~<  ( aleph `  suc  A )  ->  ( card `  B
)  ~~  B )
109ensymd 7150 . . . . 5  |-  ( B 
~<  ( aleph `  suc  A )  ->  B  ~~  ( card `  B ) )
11 sdomentr 7233 . . . . 5  |-  ( ( ( aleph `  A )  ~<  B  /\  B  ~~  ( card `  B )
)  ->  ( aleph `  A )  ~<  ( card `  B ) )
1210, 11sylan2 461 . . . 4  |-  ( ( ( aleph `  A )  ~<  B  /\  B  ~<  (
aleph `  suc  A ) )  ->  ( aleph `  A )  ~<  ( card `  B ) )
13 alephon 7942 . . . . . 6  |-  ( aleph `  A )  e.  On
14 cardon 7823 . . . . . . 7  |-  ( card `  B )  e.  On
15 onenon 7828 . . . . . . 7  |-  ( (
card `  B )  e.  On  ->  ( card `  B )  e.  dom  card )
1614, 15ax-mp 8 . . . . . 6  |-  ( card `  B )  e.  dom  card
17 cardsdomel 7853 . . . . . 6  |-  ( ( ( aleph `  A )  e.  On  /\  ( card `  B )  e.  dom  card )  ->  ( ( aleph `  A )  ~< 
( card `  B )  <->  (
aleph `  A )  e.  ( card `  ( card `  B ) ) ) )
1813, 16, 17mp2an 654 . . . . 5  |-  ( (
aleph `  A )  ~< 
( card `  B )  <->  (
aleph `  A )  e.  ( card `  ( card `  B ) ) )
191eleq2i 2499 . . . . 5  |-  ( (
aleph `  A )  e.  ( card `  ( card `  B ) )  <-> 
( aleph `  A )  e.  ( card `  B
) )
2018, 19bitri 241 . . . 4  |-  ( (
aleph `  A )  ~< 
( card `  B )  <->  (
aleph `  A )  e.  ( card `  B
) )
2112, 20sylib 189 . . 3  |-  ( ( ( aleph `  A )  ~<  B  /\  B  ~<  (
aleph `  suc  A ) )  ->  ( aleph `  A )  e.  (
card `  B )
)
22 ensdomtr 7235 . . . . . 6  |-  ( ( ( card `  B
)  ~~  B  /\  B  ~<  ( aleph `  suc  A ) )  ->  ( card `  B )  ~< 
( aleph `  suc  A ) )
239, 22mpancom 651 . . . . 5  |-  ( B 
~<  ( aleph `  suc  A )  ->  ( card `  B
)  ~<  ( aleph `  suc  A ) )
2423adantl 453 . . . 4  |-  ( ( ( aleph `  A )  ~<  B  /\  B  ~<  (
aleph `  suc  A ) )  ->  ( card `  B )  ~<  ( aleph `  suc  A ) )
25 onenon 7828 . . . . . . 7  |-  ( (
aleph `  suc  A )  e.  On  ->  ( aleph `  suc  A )  e.  dom  card )
264, 25ax-mp 8 . . . . . 6  |-  ( aleph ` 
suc  A )  e. 
dom  card
27 cardsdomel 7853 . . . . . 6  |-  ( ( ( card `  B
)  e.  On  /\  ( aleph `  suc  A )  e.  dom  card )  ->  ( ( card `  B
)  ~<  ( aleph `  suc  A )  <->  ( card `  B
)  e.  ( card `  ( aleph `  suc  A ) ) ) )
2814, 26, 27mp2an 654 . . . . 5  |-  ( (
card `  B )  ~<  ( aleph `  suc  A )  <-> 
( card `  B )  e.  ( card `  ( aleph `  suc  A ) ) )
29 alephcard 7943 . . . . . 6  |-  ( card `  ( aleph `  suc  A ) )  =  ( aleph ` 
suc  A )
3029eleq2i 2499 . . . . 5  |-  ( (
card `  B )  e.  ( card `  ( aleph `  suc  A ) )  <->  ( card `  B
)  e.  ( aleph ` 
suc  A ) )
3128, 30bitri 241 . . . 4  |-  ( (
card `  B )  ~<  ( aleph `  suc  A )  <-> 
( card `  B )  e.  ( aleph `  suc  A ) )
3224, 31sylib 189 . . 3  |-  ( ( ( aleph `  A )  ~<  B  /\  B  ~<  (
aleph `  suc  A ) )  ->  ( card `  B )  e.  (
aleph `  suc  A ) )
3321, 32jca 519 . 2  |-  ( ( ( aleph `  A )  ~<  B  /\  B  ~<  (
aleph `  suc  A ) )  ->  ( ( aleph `  A )  e.  ( card `  B
)  /\  ( card `  B )  e.  (
aleph `  suc  A ) ) )
343, 33mto 169 1  |-  -.  (
( aleph `  A )  ~<  B  /\  B  ~<  (
aleph `  suc  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   class class class wbr 4204   Oncon0 4573   suc csuc 4575   dom cdm 4870   ` cfv 5446    ~~ cen 7098    ~<_ cdom 7099    ~< csdm 7100   cardccrd 7814   alephcale 7815
This theorem is referenced by:  alephsucdom  7952  alephsucpw2  7984  alephgch  8545  winalim2  8563  aleph1re  12836
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-har 7518  df-card 7818  df-aleph 7819
  Copyright terms: Public domain W3C validator