MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephord Unicode version

Theorem alephord 7718
Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
alephord  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  (
aleph `  A )  ~< 
( aleph `  B )
) )

Proof of Theorem alephord
StepHypRef Expression
1 alephordi 7717 . . 3  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
aleph `  A )  ~< 
( aleph `  B )
) )
21adantl 452 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  ( aleph `  A )  ~<  ( aleph `  B )
) )
3 brsdom 6900 . . 3  |-  ( (
aleph `  A )  ~< 
( aleph `  B )  <->  ( ( aleph `  A )  ~<_  ( aleph `  B )  /\  -.  ( aleph `  A
)  ~~  ( aleph `  B ) ) )
4 alephon 7712 . . . . . . . . 9  |-  ( aleph `  A )  e.  On
5 alephon 7712 . . . . . . . . 9  |-  ( aleph `  B )  e.  On
6 domtriord 7023 . . . . . . . . 9  |-  ( ( ( aleph `  A )  e.  On  /\  ( aleph `  B )  e.  On )  ->  ( ( aleph `  A )  ~<_  ( aleph `  B )  <->  -.  ( aleph `  B )  ~< 
( aleph `  A )
) )
74, 5, 6mp2an 653 . . . . . . . 8  |-  ( (
aleph `  A )  ~<_  (
aleph `  B )  <->  -.  ( aleph `  B )  ~< 
( aleph `  A )
)
8 alephordi 7717 . . . . . . . . 9  |-  ( A  e.  On  ->  ( B  e.  A  ->  (
aleph `  B )  ~< 
( aleph `  A )
) )
98con3d 125 . . . . . . . 8  |-  ( A  e.  On  ->  ( -.  ( aleph `  B )  ~<  ( aleph `  A )  ->  -.  B  e.  A
) )
107, 9syl5bi 208 . . . . . . 7  |-  ( A  e.  On  ->  (
( aleph `  A )  ~<_  ( aleph `  B )  ->  -.  B  e.  A
) )
1110adantr 451 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  ~<_  ( aleph `  B
)  ->  -.  B  e.  A ) )
12 ontri1 4442 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
1311, 12sylibrd 225 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  ~<_  ( aleph `  B
)  ->  A  C_  B
) )
14 fveq2 5541 . . . . . . . 8  |-  ( A  =  B  ->  ( aleph `  A )  =  ( aleph `  B )
)
15 eqeng 6911 . . . . . . . 8  |-  ( (
aleph `  A )  e.  On  ->  ( ( aleph `  A )  =  ( aleph `  B )  ->  ( aleph `  A )  ~~  ( aleph `  B )
) )
164, 14, 15mpsyl 59 . . . . . . 7  |-  ( A  =  B  ->  ( aleph `  A )  ~~  ( aleph `  B )
)
1716necon3bi 2500 . . . . . 6  |-  ( -.  ( aleph `  A )  ~~  ( aleph `  B )  ->  A  =/=  B )
1817a1i 10 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  ( aleph `  A )  ~~  ( aleph `  B )  ->  A  =/=  B ) )
1913, 18anim12d 546 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( ( aleph `  A )  ~<_  ( aleph `  B )  /\  -.  ( aleph `  A )  ~~  ( aleph `  B )
)  ->  ( A  C_  B  /\  A  =/= 
B ) ) )
20 onelpss 4448 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  ( A  C_  B  /\  A  =/=  B ) ) )
2119, 20sylibrd 225 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( ( aleph `  A )  ~<_  ( aleph `  B )  /\  -.  ( aleph `  A )  ~~  ( aleph `  B )
)  ->  A  e.  B ) )
223, 21syl5bi 208 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( aleph `  A
)  ~<  ( aleph `  B
)  ->  A  e.  B ) )
232, 22impbid 183 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  (
aleph `  A )  ~< 
( aleph `  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459    C_ wss 3165   class class class wbr 4039   Oncon0 4408   ` cfv 5271    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   alephcale 7585
This theorem is referenced by:  alephord2  7719  alephdom  7724  alephval2  8210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-oi 7241  df-har 7288  df-card 7588  df-aleph 7589
  Copyright terms: Public domain W3C validator