MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alex Structured version   Unicode version

Theorem alex 1582
Description: Theorem 19.6 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
alex  |-  ( A. x ph  <->  -.  E. x  -.  ph )

Proof of Theorem alex
StepHypRef Expression
1 notnot 284 . . 3  |-  ( ph  <->  -. 
-.  ph )
21albii 1576 . 2  |-  ( A. x ph  <->  A. x  -.  -.  ph )
3 alnex 1553 . 2  |-  ( A. x  -.  -.  ph  <->  -.  E. x  -.  ph )
42, 3bitri 242 1  |-  ( A. x ph  <->  -.  E. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 178   A.wal 1550   E.wex 1551
This theorem is referenced by:  2nalexn  1583  exnal  1584  19.3v  1678  sp  1764  hba1  1805  exists2  2372  pm10.253  27535  vk15.4j  28613  vk15.4jVD  29027
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567
This theorem depends on definitions:  df-bi 179  df-ex 1552
  Copyright terms: Public domain W3C validator