MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubALT Unicode version

Theorem alexsubALT 18003
Description: The Alexander Subbase Theorem: a space is compact iff it has a subbase such that any cover taken from the subbase has a finite subcover. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
alexsubALT.1  |-  X  = 
U. J
Assertion
Ref Expression
alexsubALT  |-  ( J  e.  Comp  <->  E. x ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) )
Distinct variable groups:    c, d, x, J    X, c, d, x

Proof of Theorem alexsubALT
Dummy variables  a 
b  f  t  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alexsubALT.1 . . 3  |-  X  = 
U. J
21alexsubALTlem1 17999 . 2  |-  ( J  e.  Comp  ->  E. x
( J  =  (
topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
31alexsubALTlem4 18002 . . . . 5  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( A. c  e.  ~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  ->  A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
) ) )
4 vex 2902 . . . . . . . . . 10  |-  c  e. 
_V
54elpw 3748 . . . . . . . . 9  |-  ( c  e.  ~P J  <->  c  C_  J )
6 eleq2 2448 . . . . . . . . . . . . . . . . . . 19  |-  ( X  =  U. c  -> 
( t  e.  X  <->  t  e.  U. c ) )
763ad2ant3 980 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( t  e.  X  <->  t  e.  U. c ) )
8 eluni 3960 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  e.  U. c  <->  E. w
( t  e.  w  /\  w  e.  c
) )
9 ssel 3285 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( c 
C_  J  ->  (
w  e.  c  ->  w  e.  J )
)
10 eleq2 2448 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( w  e.  J  <->  w  e.  ( topGen `
 ( fi `  x ) ) ) )
11 tg2 16953 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( w  e.  ( topGen `  ( fi `  x
) )  /\  t  e.  w )  ->  E. y  e.  ( fi `  x
) ( t  e.  y  /\  y  C_  w ) )
1211ex 424 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  e.  ( topGen `  ( fi `  x ) )  ->  ( t  e.  w  ->  E. y  e.  ( fi `  x
) ( t  e.  y  /\  y  C_  w ) ) )
1310, 12syl6bi 220 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( w  e.  J  ->  ( t  e.  w  ->  E. y  e.  ( fi `  x
) ( t  e.  y  /\  y  C_  w ) ) ) )
149, 13sylan9r 640 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J )  ->  (
w  e.  c  -> 
( t  e.  w  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  y  C_  w
) ) ) )
15143impia 1150 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  w  e.  c )  ->  (
t  e.  w  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  y  C_  w ) ) )
16 sseq2 3313 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( z  =  w  ->  (
y  C_  z  <->  y  C_  w ) )
1716rspcev 2995 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( w  e.  c  /\  y  C_  w )  ->  E. z  e.  c 
y  C_  z )
1817ex 424 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  e.  c  ->  (
y  C_  w  ->  E. z  e.  c  y 
C_  z ) )
19183ad2ant3 980 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  w  e.  c )  ->  (
y  C_  w  ->  E. z  e.  c  y 
C_  z ) )
2019anim2d 549 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  w  e.  c )  ->  (
( t  e.  y  /\  y  C_  w
)  ->  ( t  e.  y  /\  E. z  e.  c  y  C_  z ) ) )
2120reximdv 2760 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  w  e.  c )  ->  ( E. y  e.  ( fi `  x ) ( t  e.  y  /\  y  C_  w )  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  E. z  e.  c  y 
C_  z ) ) )
2215, 21syld 42 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  w  e.  c )  ->  (
t  e.  w  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  E. z  e.  c  y 
C_  z ) ) )
23223expia 1155 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J )  ->  (
w  e.  c  -> 
( t  e.  w  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  E. z  e.  c  y  C_  z
) ) ) )
2423com23 74 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J )  ->  (
t  e.  w  -> 
( w  e.  c  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  E. z  e.  c  y  C_  z
) ) ) )
2524imp3a 421 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J )  ->  (
( t  e.  w  /\  w  e.  c
)  ->  E. y  e.  ( fi `  x
) ( t  e.  y  /\  E. z  e.  c  y  C_  z ) ) )
2625exlimdv 1643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J )  ->  ( E. w ( t  e.  w  /\  w  e.  c )  ->  E. y  e.  ( fi `  x
) ( t  e.  y  /\  E. z  e.  c  y  C_  z ) ) )
278, 26syl5bi 209 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J )  ->  (
t  e.  U. c  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  E. z  e.  c  y  C_  z
) ) )
28273adant3 977 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( t  e.  U. c  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  E. z  e.  c  y  C_  z
) ) )
297, 28sylbid 207 . . . . . . . . . . . . . . . . 17  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( t  e.  X  ->  E. y  e.  ( fi `  x ) ( t  e.  y  /\  E. z  e.  c  y  C_  z
) ) )
30 ssel 3285 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y 
C_  z  ->  (
t  e.  y  -> 
t  e.  z ) )
31 elunii 3962 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  e.  z  /\  z  e.  c )  ->  t  e.  U. c
)
3231expcom 425 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  c  ->  (
t  e.  z  -> 
t  e.  U. c
) )
337biimprd 215 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( t  e.  U. c  ->  t  e.  X
) )
3432, 33sylan9r 640 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  z  e.  c )  ->  ( t  e.  z  ->  t  e.  X
) )
3530, 34syl9r 69 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  z  e.  c )  ->  ( y  C_  z  ->  ( t  e.  y  ->  t  e.  X
) ) )
3635rexlimdva 2773 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( E. z  e.  c  y  C_  z  ->  ( t  e.  y  ->  t  e.  X
) ) )
3736com23 74 . . . . . . . . . . . . . . . . . . 19  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( t  e.  y  ->  ( E. z  e.  c  y  C_  z  ->  t  e.  X
) ) )
3837imp3a 421 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( ( t  e.  y  /\  E. z  e.  c  y  C_  z )  ->  t  e.  X ) )
3938rexlimdvw 2776 . . . . . . . . . . . . . . . . 17  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( E. y  e.  ( fi `  x
) ( t  e.  y  /\  E. z  e.  c  y  C_  z )  ->  t  e.  X ) )
4029, 39impbid 184 . . . . . . . . . . . . . . . 16  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( t  e.  X  <->  E. y  e.  ( fi
`  x ) ( t  e.  y  /\  E. z  e.  c  y 
C_  z ) ) )
41 elunirab 3970 . . . . . . . . . . . . . . . 16  |-  ( t  e.  U. { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  <->  E. y  e.  ( fi `  x
) ( t  e.  y  /\  E. z  e.  c  y  C_  z ) )
4240, 41syl6bbr 255 . . . . . . . . . . . . . . 15  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( t  e.  X  <->  t  e.  U. { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z } ) )
4342eqrdv 2385 . . . . . . . . . . . . . 14  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  ->  X  =  U. { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z } )
44 ssrab2 3371 . . . . . . . . . . . . . . . 16  |-  { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  C_  ( fi `  x )
45 fvex 5682 . . . . . . . . . . . . . . . . 17  |-  ( fi
`  x )  e. 
_V
4645elpw2 4305 . . . . . . . . . . . . . . . 16  |-  ( { y  e.  ( fi
`  x )  |  E. z  e.  c  y  C_  z }  e.  ~P ( fi `  x )  <->  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  C_  ( fi
`  x ) )
4744, 46mpbir 201 . . . . . . . . . . . . . . 15  |-  { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  e.  ~P ( fi `  x )
48 unieq 3966 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  U. a  =  U. { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z } )
4948eqeq2d 2398 . . . . . . . . . . . . . . . . 17  |-  ( a  =  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  ( X  =  U. a  <->  X  =  U. { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z } ) )
50 pweq 3745 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  ~P a  =  ~P { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z } )
5150ineq1d 3484 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  ( ~P a  i^i  Fin )  =  ( ~P {
y  e.  ( fi
`  x )  |  E. z  e.  c  y  C_  z }  i^i  Fin ) )
5251rexeqdv 2854 . . . . . . . . . . . . . . . . 17  |-  ( a  =  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  ( E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b  <->  E. b  e.  ( ~P { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  i^i  Fin ) X  =  U. b ) )
5349, 52imbi12d 312 . . . . . . . . . . . . . . . 16  |-  ( a  =  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  ( ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b )  <->  ( X  =  U. { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  E. b  e.  ( ~P { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  i^i  Fin ) X  =  U. b ) ) )
5453rspcv 2991 . . . . . . . . . . . . . . 15  |-  ( { y  e.  ( fi
`  x )  |  E. z  e.  c  y  C_  z }  e.  ~P ( fi `  x )  ->  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b )  ->  ( X  =  U. { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  ->  E. b  e.  ( ~P { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  i^i  Fin ) X  =  U. b ) ) )
5547, 54ax-mp 8 . . . . . . . . . . . . . 14  |-  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b )  ->  ( X  =  U. { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  ->  E. b  e.  ( ~P { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  i^i  Fin ) X  =  U. b ) )
5643, 55syl5com 28 . . . . . . . . . . . . 13  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( A. a  e. 
~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)  ->  E. b  e.  ( ~P { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  i^i  Fin ) X  =  U. b ) )
57 elfpw 7343 . . . . . . . . . . . . . . 15  |-  ( b  e.  ( ~P {
y  e.  ( fi
`  x )  |  E. z  e.  c  y  C_  z }  i^i  Fin )  <->  ( b  C_ 
{ y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  /\  b  e.  Fin ) )
58 ssel 3285 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b 
C_  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  ( t  e.  b  ->  t  e.  { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z } ) )
59 sseq1 3312 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  t  ->  (
y  C_  z  <->  t  C_  z ) )
6059rexbidv 2670 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  =  t  ->  ( E. z  e.  c 
y  C_  z  <->  E. z  e.  c  t  C_  z ) )
6160elrab 3035 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( t  e.  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  <->  ( t  e.  ( fi `  x
)  /\  E. z  e.  c  t  C_  z ) )
6261simprbi 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  e.  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  E. z  e.  c  t  C_  z )
6358, 62syl6 31 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b 
C_  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  ( t  e.  b  ->  E. z  e.  c  t  C_  z ) )
6463ralrimiv 2731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b 
C_  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  A. t  e.  b  E. z  e.  c  t  C_  z )
65 sseq2 3313 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( f `  t )  ->  (
t  C_  z  <->  t  C_  ( f `  t
) ) )
6665ac6sfi 7287 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( b  e.  Fin  /\  A. t  e.  b  E. z  e.  c  t  C_  z )  ->  E. f
( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) ) )
6766ex 424 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  e.  Fin  ->  ( A. t  e.  b  E. z  e.  c 
t  C_  z  ->  E. f ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) ) ) )
6864, 67syl5 30 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  e.  Fin  ->  (
b  C_  { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  ->  E. f
( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) ) ) )
6968adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  ->  ( b  C_  { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  ->  E. f
( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) ) ) )
70 simprll 739 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  f : b --> c )
71 frn 5537 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f : b --> c  ->  ran  f  C_  c )
7270, 71syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  ran  f  C_  c )
73 simplr 732 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  b  e.  Fin )
74 ffn 5531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f : b --> c  -> 
f  Fn  b )
75 dffn4 5599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f  Fn  b  <->  f :
b -onto-> ran  f )
7674, 75sylib 189 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f : b --> c  -> 
f : b -onto-> ran  f )
7776adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f : b --> c  /\  A. t  e.  b  t  C_  (
f `  t )
)  ->  f :
b -onto-> ran  f )
7877ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  f : b
-onto->
ran  f )
79 fodomfi 7321 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( b  e.  Fin  /\  f : b -onto-> ran  f
)  ->  ran  f  ~<_  b )
8073, 78, 79syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  ran  f  ~<_  b )
81 domfi 7266 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( b  e.  Fin  /\  ran  f  ~<_  b )  ->  ran  f  e.  Fin )
8273, 80, 81syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  ran  f  e.  Fin )
8372, 82jca 519 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  ( ran  f  C_  c  /\  ran  f  e.  Fin ) )
84 elin 3473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ran  f  e.  ( ~P c  i^i  Fin )  <->  ( ran  f  e.  ~P c  /\  ran  f  e. 
Fin ) )
854elpw2 4305 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ran  f  e.  ~P c  <->  ran  f  C_  c )
8685anbi1i 677 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ran  f  e.  ~P c  /\  ran  f  e. 
Fin )  <->  ( ran  f  C_  c  /\  ran  f  e.  Fin )
)
8784, 86bitr2i 242 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ran  f  C_  c  /\  ran  f  e.  Fin ) 
<->  ran  f  e.  ( ~P c  i^i  Fin ) )
8883, 87sylib 189 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  ran  f  e.  ( ~P c  i^i  Fin ) )
89 simprr 734 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  X  =  U. b )
90 uniiun 4085 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  U. b  =  U_ t  e.  b  t
91 simprlr 740 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  A. t  e.  b  t  C_  ( f `  t ) )
92 ss2iun 4050 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A. t  e.  b  t  C_  ( f `  t
)  ->  U_ t  e.  b  t  C_  U_ t  e.  b  ( f `  t ) )
9391, 92syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  U_ t  e.  b  t  C_  U_ t  e.  b  ( f `  t ) )
9490, 93syl5eqss 3335 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  U. b  C_  U_ t  e.  b  ( f `  t ) )
95 fniunfv 5933 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  Fn  b  ->  U_ t  e.  b  ( f `  t )  =  U. ran  f )
9670, 74, 953syl 19 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  U_ t  e.  b  ( f `  t
)  =  U. ran  f )
9794, 96sseqtrd 3327 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  U. b  C_  U. ran  f )
9889, 97eqsstrd 3325 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  X  C_  U. ran  f )
99 simpll2 997 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  c  C_  J
)
10072, 99sstrd 3301 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  ran  f  C_  J )
101 uniss 3978 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ran  f  C_  J  ->  U.
ran  f  C_  U. J
)
102101, 1syl6sseqr 3338 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ran  f  C_  J  ->  U.
ran  f  C_  X
)
103100, 102syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  U. ran  f  C_  X )
10498, 103eqssd 3308 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  X  =  U. ran  f )
105 unieq 3966 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( d  =  ran  f  ->  U. d  =  U. ran  f )
106105eqeq2d 2398 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d  =  ran  f  -> 
( X  =  U. d 
<->  X  =  U. ran  f ) )
107106rspcev 2995 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ran  f  e.  ( ~P c  i^i  Fin )  /\  X  =  U. ran  f )  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d )
10888, 104, 107syl2anc 643 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  =  ( topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  /\  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  /\  X  =  U. b ) )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d )
109108exp32 589 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  ->  ( ( f : b --> c  /\  A. t  e.  b  t  C_  ( f `  t
) )  ->  ( X  =  U. b  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
110109exlimdv 1643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  ->  ( E. f ( f : b --> c  /\  A. t  e.  b  t  C_  (
f `  t )
)  ->  ( X  =  U. b  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) ) )
11169, 110syld 42 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  =  (
topGen `  ( fi `  x ) )  /\  c  C_  J  /\  X  =  U. c )  /\  b  e.  Fin )  ->  ( b  C_  { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  ->  ( X  =  U. b  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
112111ex 424 . . . . . . . . . . . . . . . . 17  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( b  e.  Fin  ->  ( b  C_  { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  ->  ( X  =  U. b  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) ) )
113112com23 74 . . . . . . . . . . . . . . . 16  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( b  C_  { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  ->  (
b  e.  Fin  ->  ( X  =  U. b  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) ) )
114113imp3a 421 . . . . . . . . . . . . . . 15  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( ( b  C_  { y  e.  ( fi
`  x )  |  E. z  e.  c  y  C_  z }  /\  b  e.  Fin )  ->  ( X  = 
U. b  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) ) )
11557, 114syl5bi 209 . . . . . . . . . . . . . 14  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( b  e.  ( ~P { y  e.  ( fi `  x
)  |  E. z  e.  c  y  C_  z }  i^i  Fin )  ->  ( X  =  U. b  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
116115rexlimdv 2772 . . . . . . . . . . . . 13  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( E. b  e.  ( ~P { y  e.  ( fi `  x )  |  E. z  e.  c  y  C_  z }  i^i  Fin ) X  =  U. b  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )
11756, 116syld 42 . . . . . . . . . . . 12  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  c  C_  J  /\  X  = 
U. c )  -> 
( A. a  e. 
~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) )
1181173exp 1152 . . . . . . . . . . 11  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( c  C_  J  ->  ( X  = 
U. c  ->  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b )  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) ) ) )
119118com34 79 . . . . . . . . . 10  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( c  C_  J  ->  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)  ->  ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) ) ) )
120119com23 74 . . . . . . . . 9  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)  ->  ( c  C_  J  ->  ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) ) ) )
1215, 120syl7bi 222 . . . . . . . 8  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)  ->  ( c  e.  ~P J  ->  ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) ) )
122121ralrimdv 2738 . . . . . . 7  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)  ->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) )
123 fibas 16965 . . . . . . . . 9  |-  ( fi
`  x )  e.  TopBases
124 tgcl 16957 . . . . . . . . 9  |-  ( ( fi `  x )  e.  TopBases  ->  ( topGen `  ( fi `  x ) )  e.  Top )
125123, 124ax-mp 8 . . . . . . . 8  |-  ( topGen `  ( fi `  x
) )  e.  Top
126 eleq1 2447 . . . . . . . 8  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( J  e. 
Top 
<->  ( topGen `  ( fi `  x ) )  e. 
Top ) )
127125, 126mpbiri 225 . . . . . . 7  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  J  e.  Top )
128122, 127jctild 528 . . . . . 6  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)  ->  ( J  e.  Top  /\  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) ) )
1291iscmp 17373 . . . . . 6  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) )
130128, 129syl6ibr 219 . . . . 5  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( A. a  e.  ~P  ( fi `  x ) ( X  =  U. a  ->  E. b  e.  ( ~P a  i^i  Fin ) X  =  U. b
)  ->  J  e.  Comp ) )
1313, 130syld 42 . . . 4  |-  ( J  =  ( topGen `  ( fi `  x ) )  ->  ( A. c  e.  ~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)  ->  J  e.  Comp ) )
132131imp 419 . . 3  |-  ( ( J  =  ( topGen `  ( fi `  x
) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )  ->  J  e.  Comp )
133132exlimiv 1641 . 2  |-  ( E. x ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e.  ~P  x
( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )  ->  J  e.  Comp )
1342, 133impbii 181 1  |-  ( J  e.  Comp  <->  E. x ( J  =  ( topGen `  ( fi `  x ) )  /\  A. c  e. 
~P  x ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   {crab 2653    i^i cin 3262    C_ wss 3263   ~Pcpw 3742   U.cuni 3957   U_ciun 4035   class class class wbr 4153   ran crn 4819    Fn wfn 5389   -->wf 5390   -onto->wfo 5392   ` cfv 5394    ~<_ cdom 7043   Fincfn 7045   ficfi 7350   topGenctg 13592   Topctop 16881   TopBasesctb 16885   Compccmp 17371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-ac2 8276
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-rpss 6458  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-fin 7049  df-fi 7351  df-card 7759  df-ac 7930  df-topgen 13594  df-top 16886  df-bases 16888  df-cmp 17372
  Copyright terms: Public domain W3C validator