MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsubb Structured version   Unicode version

Theorem alexsubb 18079
Description: Biconditional form of the Alexander Subbase Theorem alexsub 18078. (Contributed by Mario Carneiro, 27-Aug-2015.)
Assertion
Ref Expression
alexsubb  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  <->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
Distinct variable groups:    x, y, B    x, X, y

Proof of Theorem alexsubb
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2438 . . . . 5  |-  U. ( topGen `
 ( fi `  B ) )  = 
U. ( topGen `  ( fi `  B ) )
21iscmp 17453 . . . 4  |-  ( (
topGen `  ( fi `  B ) )  e. 
Comp 
<->  ( ( topGen `  ( fi `  B ) )  e.  Top  /\  A. x  e.  ~P  ( topGen `
 ( fi `  B ) ) ( U. ( topGen `  ( fi `  B ) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  = 
U. y ) ) )
32simprbi 452 . . 3  |-  ( (
topGen `  ( fi `  B ) )  e. 
Comp  ->  A. x  e.  ~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B ) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  = 
U. y ) )
4 simpr 449 . . . . . . . . . . 11  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  =  U. B )
5 elex 2966 . . . . . . . . . . . 12  |-  ( X  e. UFL  ->  X  e.  _V )
65adantr 453 . . . . . . . . . . 11  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  e.  _V )
74, 6eqeltrrd 2513 . . . . . . . . . 10  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. B  e.  _V )
8 uniexb 4754 . . . . . . . . . 10  |-  ( B  e.  _V  <->  U. B  e. 
_V )
97, 8sylibr 205 . . . . . . . . 9  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  e.  _V )
10 fiuni 7435 . . . . . . . . 9  |-  ( B  e.  _V  ->  U. B  =  U. ( fi `  B ) )
119, 10syl 16 . . . . . . . 8  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. B  =  U. ( fi `  B ) )
12 fibas 17044 . . . . . . . . 9  |-  ( fi
`  B )  e.  TopBases
13 unitg 17034 . . . . . . . . 9  |-  ( ( fi `  B )  e.  TopBases  ->  U. ( topGen `  ( fi `  B ) )  =  U. ( fi
`  B ) )
1412, 13mp1i 12 . . . . . . . 8  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  U. ( topGen `  ( fi `  B ) )  = 
U. ( fi `  B ) )
1511, 4, 143eqtr4d 2480 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  X  =  U. ( topGen `
 ( fi `  B ) ) )
1615eqeq1d 2446 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( X  =  U. x 
<-> 
U. ( topGen `  ( fi `  B ) )  =  U. x ) )
1715eqeq1d 2446 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( X  =  U. y 
<-> 
U. ( topGen `  ( fi `  B ) )  =  U. y ) )
1817rexbidv 2728 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y  <->  E. y  e.  ( ~P x  i^i 
Fin ) U. ( topGen `
 ( fi `  B ) )  = 
U. y ) )
1916, 18imbi12d 313 . . . . 5  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y )  <->  ( U. ( topGen `  ( fi `  B ) )  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) U. ( topGen `
 ( fi `  B ) )  = 
U. y ) ) )
2019ralbidv 2727 . . . 4  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  <->  A. x  e.  ~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B
) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  =  U. y ) ) )
21 ssfii 7426 . . . . . . . 8  |-  ( B  e.  _V  ->  B  C_  ( fi `  B
) )
229, 21syl 16 . . . . . . 7  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  C_  ( fi `  B ) )
23 bastg 17033 . . . . . . . 8  |-  ( ( fi `  B )  e.  TopBases  ->  ( fi `  B )  C_  ( topGen `
 ( fi `  B ) ) )
2412, 23ax-mp 8 . . . . . . 7  |-  ( fi
`  B )  C_  ( topGen `  ( fi `  B ) )
2522, 24syl6ss 3362 . . . . . 6  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  B  C_  ( topGen `  ( fi `  B ) ) )
26 sspwb 4415 . . . . . 6  |-  ( B 
C_  ( topGen `  ( fi `  B ) )  <->  ~P B  C_  ~P ( topGen `
 ( fi `  B ) ) )
2725, 26sylib 190 . . . . 5  |-  ( ( X  e. UFL  /\  X  =  U. B )  ->  ~P B  C_  ~P ( topGen `
 ( fi `  B ) ) )
28 ssralv 3409 . . . . 5  |-  ( ~P B  C_  ~P ( topGen `
 ( fi `  B ) )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
2927, 28syl 16 . . . 4  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
3020, 29sylbird 228 . . 3  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  ( topGen `  ( fi `  B ) ) ( U. ( topGen `  ( fi `  B
) )  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) U. ( topGen `  ( fi `  B ) )  =  U. y )  ->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
313, 30syl5 31 . 2  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  ->  A. x  e.  ~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) ) )
32 simpll 732 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  X  e. UFL )
33 simplr 733 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  X  =  U. B )
34 eqidd 2439 . . . 4  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  ( topGen `
 ( fi `  B ) )  =  ( topGen `  ( fi `  B ) ) )
35 vex 2961 . . . . . . . 8  |-  z  e. 
_V
3635elpw 3807 . . . . . . 7  |-  ( z  e.  ~P B  <->  z  C_  B )
37 unieq 4026 . . . . . . . . . . 11  |-  ( x  =  z  ->  U. x  =  U. z )
3837eqeq2d 2449 . . . . . . . . . 10  |-  ( x  =  z  ->  ( X  =  U. x  <->  X  =  U. z ) )
39 pweq 3804 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ~P x  =  ~P z
)
4039ineq1d 3543 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ~P x  i^i  Fin )  =  ( ~P z  i^i  Fin ) )
4140rexeqdv 2913 . . . . . . . . . 10  |-  ( x  =  z  ->  ( E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y  <->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y
) )
4238, 41imbi12d 313 . . . . . . . . 9  |-  ( x  =  z  ->  (
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  <->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i 
Fin ) X  = 
U. y ) ) )
4342rspccv 3051 . . . . . . . 8  |-  ( A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )  ->  (
z  e.  ~P B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4443adantl 454 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  (
z  e.  ~P B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4536, 44syl5bir 211 . . . . . 6  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  (
z  C_  B  ->  ( X  =  U. z  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y ) ) )
4645imp32 424 . . . . 5  |-  ( ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y ) )  /\  ( z  C_  B  /\  X  =  U. z ) )  ->  E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y
)
47 unieq 4026 . . . . . . 7  |-  ( y  =  w  ->  U. y  =  U. w )
4847eqeq2d 2449 . . . . . 6  |-  ( y  =  w  ->  ( X  =  U. y  <->  X  =  U. w ) )
4948cbvrexv 2935 . . . . 5  |-  ( E. y  e.  ( ~P z  i^i  Fin ) X  =  U. y  <->  E. w  e.  ( ~P z  i^i  Fin ) X  =  U. w
)
5046, 49sylib 190 . . . 4  |-  ( ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e.  ~P  B
( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y ) )  /\  ( z  C_  B  /\  X  =  U. z ) )  ->  E. w  e.  ( ~P z  i^i  Fin ) X  =  U. w
)
5132, 33, 34, 50alexsub 18078 . . 3  |-  ( ( ( X  e. UFL  /\  X  =  U. B )  /\  A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
) )  ->  ( topGen `
 ( fi `  B ) )  e. 
Comp )
5251ex 425 . 2  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( A. x  e. 
~P  B ( X  =  U. x  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y
)  ->  ( topGen `  ( fi `  B
) )  e.  Comp ) )
5331, 52impbid 185 1  |-  ( ( X  e. UFL  /\  X  =  U. B )  -> 
( ( topGen `  ( fi `  B ) )  e.  Comp  <->  A. x  e.  ~P  B ( X  = 
U. x  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   _Vcvv 2958    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   U.cuni 4017   ` cfv 5456   Fincfn 7111   ficfi 7417   topGenctg 13667   Topctop 16960   TopBasesctb 16964   Compccmp 17451  UFLcufl 17934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-topgen 13669  df-fbas 16701  df-fg 16702  df-top 16965  df-bases 16967  df-topon 16968  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-cmp 17452  df-fil 17880  df-ufil 17935  df-ufl 17936  df-flim 17973  df-fcls 17975
  Copyright terms: Public domain W3C validator