MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsublem Unicode version

Theorem alexsublem 17996
Description: Lemma for alexsub 17997. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
alexsub.1  |-  ( ph  ->  X  e. UFL )
alexsub.2  |-  ( ph  ->  X  =  U. B
)
alexsub.3  |-  ( ph  ->  J  =  ( topGen `  ( fi `  B
) ) )
alexsub.4  |-  ( (
ph  /\  ( x  C_  B  /\  X  = 
U. x ) )  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )
alexsub.5  |-  ( ph  ->  F  e.  ( UFil `  X ) )
alexsub.6  |-  ( ph  ->  ( J  fLim  F
)  =  (/) )
Assertion
Ref Expression
alexsublem  |-  -.  ph
Distinct variable groups:    x, y, B    x, J, y    ph, x, y    x, X, y    x, F, y

Proof of Theorem alexsublem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eldif 3273 . . . . . . . . . 10  |-  ( x  e.  ( X  \  U. ( B  \  F
) )  <->  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )
2 alexsub.3 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  =  ( topGen `  ( fi `  B
) ) )
32eleq2d 2454 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( y  e.  J  <->  y  e.  ( topGen `  ( fi `  B ) ) ) )
43anbi1d 686 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( y  e.  J  /\  x  e.  y )  <->  ( y  e.  ( topGen `  ( fi `  B ) )  /\  x  e.  y )
) )
54biimpa 471 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
( y  e.  (
topGen `  ( fi `  B ) )  /\  x  e.  y )
)
65adantlr 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
( y  e.  (
topGen `  ( fi `  B ) )  /\  x  e.  y )
)
7 tg2 16953 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ( topGen `  ( fi `  B
) )  /\  x  e.  y )  ->  E. z  e.  ( fi `  B
) ( x  e.  z  /\  z  C_  y ) )
86, 7syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  ->  E. z  e.  ( fi `  B ) ( x  e.  z  /\  z  C_  y ) )
9 alexsub.5 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  ( UFil `  X ) )
10 ufilfil 17857 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
119, 10syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  ( Fil `  X ) )
1211ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  F  e.  ( Fil `  X ) )
13 alexsub.2 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  X  =  U. B
)
149elfvexd 5699 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  X  e.  _V )
1513, 14eqeltrrd 2462 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  U. B  e.  _V )
16 uniexb 4692 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  _V  <->  U. B  e. 
_V )
1715, 16sylibr 204 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  B  e.  _V )
18 elfi2 7354 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  _V  ->  (
z  e.  ( fi
`  B )  <->  E. y  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) z  = 
|^| y ) )
1917, 18syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( z  e.  ( fi `  B )  <->  E. y  e.  (
( ~P B  i^i  Fin )  \  { (/) } ) z  =  |^| y ) )
2019adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  ->  ( z  e.  ( fi `  B
)  <->  E. y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } ) z  =  |^| y ) )
2111ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  F  e.  ( Fil `  X ) )
22 simplrr 738 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y )  /\  z  e.  y ) )  ->  -.  x  e.  U. ( B  \  F ) )
23 intss1 4007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  e.  y  ->  |^| y  C_  z )
2423adantl 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )  ->  |^| y  C_  z
)
25 simplr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )  ->  x  e.  |^| y
)
2624, 25sseldd 3292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )  ->  x  e.  z )
2726ad2antlr 708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )
)  /\  -.  z  e.  F )  ->  x  e.  z )
28 eldifsn 3870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  <->  ( y  e.  ( ~P B  i^i  Fin )  /\  y  =/=  (/) ) )
2928simplbi 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  -> 
y  e.  ( ~P B  i^i  Fin )
)
3029ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  e.  ( ~P B  i^i  Fin ) )
31 elfpw 7343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( y  e.  ( ~P B  i^i  Fin )  <->  ( y  C_  B  /\  y  e. 
Fin ) )
3231simplbi 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( y  e.  ( ~P B  i^i  Fin )  ->  y  C_  B )
3330, 32syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  C_  B )
3433sselda 3291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  /\  z  e.  y )  ->  z  e.  B )
3534anasss 629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y )  /\  z  e.  y ) )  -> 
z  e.  B )
3635anim1i 552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )
)  /\  -.  z  e.  F )  ->  (
z  e.  B  /\  -.  z  e.  F
) )
37 eldif 3273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( z  e.  ( B  \  F )  <->  ( z  e.  B  /\  -.  z  e.  F ) )
3836, 37sylibr 204 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )
)  /\  -.  z  e.  F )  ->  z  e.  ( B  \  F
) )
39 elunii 3962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  z  /\  z  e.  ( B  \  F ) )  ->  x  e.  U. ( B  \  F ) )
4027, 38, 39syl2anc 643 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e. 
|^| y )  /\  z  e.  y )
)  /\  -.  z  e.  F )  ->  x  e.  U. ( B  \  F ) )
4140ex 424 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y )  /\  z  e.  y ) )  -> 
( -.  z  e.  F  ->  x  e.  U. ( B  \  F
) ) )
4222, 41mt3d 119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y )  /\  z  e.  y ) )  -> 
z  e.  F )
4342expr 599 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  ( z  e.  y  ->  z  e.  F ) )
4443ssrdv 3297 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  C_  F )
4528simprbi 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  -> 
y  =/=  (/) )
4645ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  =/=  (/) )
4731simprbi 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  e.  ( ~P B  i^i  Fin )  ->  y  e.  Fin )
4830, 47syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  y  e.  Fin )
49 elfir 7355 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F  e.  ( Fil `  X )  /\  (
y  C_  F  /\  y  =/=  (/)  /\  y  e. 
Fin ) )  ->  |^| y  e.  ( fi `  F ) )
5021, 44, 46, 48, 49syl13anc 1186 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  |^| y  e.  ( fi `  F
) )
51 filfi 17812 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( F  e.  ( Fil `  X
)  ->  ( fi `  F )  =  F )
5221, 51syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  ( fi `  F )  =  F )
5350, 52eleqtrd 2463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  ( ( ~P B  i^i  Fin )  \  { (/) } )  /\  x  e.  |^| y ) )  ->  |^| y  e.  F )
5453expr 599 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  y  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) )  -> 
( x  e.  |^| y  ->  |^| y  e.  F
) )
55 eleq2 2448 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  |^| y  -> 
( x  e.  z  <-> 
x  e.  |^| y
) )
56 eleq1 2447 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  |^| y  -> 
( z  e.  F  <->  |^| y  e.  F ) )
5755, 56imbi12d 312 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  |^| y  -> 
( ( x  e.  z  ->  z  e.  F )  <->  ( x  e.  |^| y  ->  |^| y  e.  F ) ) )
5854, 57syl5ibrcom 214 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  y  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) )  -> 
( z  =  |^| y  ->  ( x  e.  z  ->  z  e.  F ) ) )
5958rexlimdva 2773 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  ->  ( E. y  e.  ( ( ~P B  i^i  Fin )  \  { (/)
} ) z  = 
|^| y  ->  (
x  e.  z  -> 
z  e.  F ) ) )
6020, 59sylbid 207 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  ->  ( z  e.  ( fi `  B
)  ->  ( x  e.  z  ->  z  e.  F ) ) )
6160imp32 423 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( z  e.  ( fi `  B )  /\  x  e.  z ) )  -> 
z  e.  F )
6261adantrrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( z  e.  ( fi `  B )  /\  (
x  e.  z  /\  z  C_  y ) ) )  ->  z  e.  F )
6362adantlr 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  z  e.  F
)
64 elssuni 3985 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  J  ->  y  C_ 
U. J )
6564ad2antrl 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  C_  U. J )
66 fibas 16965 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( fi
`  B )  e.  TopBases
67 tgtopon 16959 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( fi `  B )  e.  TopBases  ->  ( topGen `  ( fi `  B ) )  e.  (TopOn `  U. ( fi `  B ) ) )
6866, 67ax-mp 8 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( topGen `  ( fi `  B
) )  e.  (TopOn `  U. ( fi `  B ) )
692, 68syl6eqel 2475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  J  e.  (TopOn `  U. ( fi `  B
) ) )
70 fiuni 7368 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( B  e.  _V  ->  U. B  =  U. ( fi `  B ) )
7117, 70syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  U. B  =  U. ( fi `  B ) )
7213, 71eqtrd 2419 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  X  =  U. ( fi `  B ) )
7372fveq2d 5672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  (TopOn `  X )  =  (TopOn `  U. ( fi
`  B ) ) )
7469, 73eleqtrrd 2464 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  J  e.  (TopOn `  X ) )
75 toponuni 16915 . . . . . . . . . . . . . . . . . . . 20  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
7674, 75syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  X  =  U. J
)
7776ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  ->  X  =  U. J )
7865, 77sseqtr4d 3328 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  C_  X )
7978adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  y  C_  X
)
80 simprrr 742 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  z  C_  y
)
81 filss 17806 . . . . . . . . . . . . . . . 16  |-  ( ( F  e.  ( Fil `  X )  /\  (
z  e.  F  /\  y  C_  X  /\  z  C_  y ) )  -> 
y  e.  F )
8212, 63, 79, 80, 81syl13anc 1186 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  (
y  e.  J  /\  x  e.  y )
)  /\  ( z  e.  ( fi `  B
)  /\  ( x  e.  z  /\  z  C_  y ) ) )  ->  y  e.  F
)
838, 82rexlimddv 2777 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  ( y  e.  J  /\  x  e.  y ) )  -> 
y  e.  F )
8483expr 599 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  /\  y  e.  J )  ->  (
x  e.  y  -> 
y  e.  F ) )
8584ralrimiva 2732 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) ) )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) )
8685expr 599 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  ( -.  x  e.  U. ( B  \  F )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) )
8786imdistanda 675 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  X  /\  -.  x  e.  U. ( B  \  F ) )  -> 
( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
881, 87syl5bi 209 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( X  \  U. ( B  \  F ) )  ->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
89 flimopn 17928 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  F )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  F ) ) ) )
9074, 11, 89syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( J  fLim  F )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  -> 
y  e.  F ) ) ) )
9188, 90sylibrd 226 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( X  \  U. ( B  \  F ) )  ->  x  e.  ( J  fLim  F )
) )
9291ssrdv 3297 . . . . . . 7  |-  ( ph  ->  ( X  \  U. ( B  \  F ) )  C_  ( J  fLim  F ) )
93 alexsub.6 . . . . . . 7  |-  ( ph  ->  ( J  fLim  F
)  =  (/) )
94 sseq0 3602 . . . . . . 7  |-  ( ( ( X  \  U. ( B  \  F ) )  C_  ( J  fLim  F )  /\  ( J  fLim  F )  =  (/) )  ->  ( X 
\  U. ( B  \  F ) )  =  (/) )
9592, 93, 94syl2anc 643 . . . . . 6  |-  ( ph  ->  ( X  \  U. ( B  \  F ) )  =  (/) )
96 ssdif0 3629 . . . . . 6  |-  ( X 
C_  U. ( B  \  F )  <->  ( X  \ 
U. ( B  \  F ) )  =  (/) )
9795, 96sylibr 204 . . . . 5  |-  ( ph  ->  X  C_  U. ( B  \  F ) )
98 difss 3417 . . . . . . 7  |-  ( B 
\  F )  C_  B
9998unissi 3980 . . . . . 6  |-  U. ( B  \  F )  C_  U. B
10099, 13syl5sseqr 3340 . . . . 5  |-  ( ph  ->  U. ( B  \  F )  C_  X
)
10197, 100eqssd 3308 . . . 4  |-  ( ph  ->  X  =  U. ( B  \  F ) )
102101, 98jctil 524 . . 3  |-  ( ph  ->  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) )
103 difexg 4292 . . . . . 6  |-  ( B  e.  _V  ->  ( B  \  F )  e. 
_V )
10417, 103syl 16 . . . . 5  |-  ( ph  ->  ( B  \  F
)  e.  _V )
105104adantr 452 . . . 4  |-  ( (
ph  /\  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) )  ->  ( B  \  F )  e. 
_V )
106 sseq1 3312 . . . . . . . 8  |-  ( x  =  ( B  \  F )  ->  (
x  C_  B  <->  ( B  \  F )  C_  B
) )
107 unieq 3966 . . . . . . . . 9  |-  ( x  =  ( B  \  F )  ->  U. x  =  U. ( B  \  F ) )
108107eqeq2d 2398 . . . . . . . 8  |-  ( x  =  ( B  \  F )  ->  ( X  =  U. x  <->  X  =  U. ( B 
\  F ) ) )
109106, 108anbi12d 692 . . . . . . 7  |-  ( x  =  ( B  \  F )  ->  (
( x  C_  B  /\  X  =  U. x )  <->  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) ) )
110109anbi2d 685 . . . . . 6  |-  ( x  =  ( B  \  F )  ->  (
( ph  /\  (
x  C_  B  /\  X  =  U. x
) )  <->  ( ph  /\  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) ) ) )
111 pweq 3745 . . . . . . . 8  |-  ( x  =  ( B  \  F )  ->  ~P x  =  ~P ( B  \  F ) )
112111ineq1d 3484 . . . . . . 7  |-  ( x  =  ( B  \  F )  ->  ( ~P x  i^i  Fin )  =  ( ~P ( B  \  F )  i^i 
Fin ) )
113112rexeqdv 2854 . . . . . 6  |-  ( x  =  ( B  \  F )  ->  ( E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y  <->  E. y  e.  ( ~P ( B  \  F
)  i^i  Fin ) X  =  U. y
) )
114110, 113imbi12d 312 . . . . 5  |-  ( x  =  ( B  \  F )  ->  (
( ( ph  /\  ( x  C_  B  /\  X  =  U. x
) )  ->  E. y  e.  ( ~P x  i^i 
Fin ) X  = 
U. y )  <->  ( ( ph  /\  ( ( B 
\  F )  C_  B  /\  X  =  U. ( B  \  F ) ) )  ->  E. y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) X  = 
U. y ) ) )
115 alexsub.4 . . . . 5  |-  ( (
ph  /\  ( x  C_  B  /\  X  = 
U. x ) )  ->  E. y  e.  ( ~P x  i^i  Fin ) X  =  U. y )
116114, 115vtoclg 2954 . . . 4  |-  ( ( B  \  F )  e.  _V  ->  (
( ph  /\  (
( B  \  F
)  C_  B  /\  X  =  U. ( B  \  F ) ) )  ->  E. y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) X  = 
U. y ) )
117105, 116mpcom 34 . . 3  |-  ( (
ph  /\  ( ( B  \  F )  C_  B  /\  X  =  U. ( B  \  F ) ) )  ->  E. y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) X  = 
U. y )
118102, 117mpdan 650 . 2  |-  ( ph  ->  E. y  e.  ( ~P ( B  \  F )  i^i  Fin ) X  =  U. y )
119 unieq 3966 . . . . . . 7  |-  ( y  =  (/)  ->  U. y  =  U. (/) )
120 uni0 3984 . . . . . . 7  |-  U. (/)  =  (/)
121119, 120syl6eq 2435 . . . . . 6  |-  ( y  =  (/)  ->  U. y  =  (/) )
122121neeq2d 2564 . . . . 5  |-  ( y  =  (/)  ->  ( X  =/=  U. y  <->  X  =/=  (/) ) )
123 difssd 3418 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  ( X  \  z )  C_  X )
124123ralrimivw 2733 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  A. z  e.  y  ( X  \  z )  C_  X
)
125 riinn0 4106 . . . . . . . . . 10  |-  ( ( A. z  e.  y  ( X  \  z
)  C_  X  /\  y  =/=  (/) )  ->  ( X  i^i  |^|_ z  e.  y  ( X  \  z
) )  =  |^|_ z  e.  y  ( X  \  z ) )
126124, 125sylan 458 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  i^i  |^|_ z  e.  y  ( X  \  z
) )  =  |^|_ z  e.  y  ( X  \  z ) )
12714ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  X  e.  _V )
128 difexg 4292 . . . . . . . . . . . . 13  |-  ( X  e.  _V  ->  ( X  \  z )  e. 
_V )
129127, 128syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  \  z )  e. 
_V )
130129ralrimivw 2733 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  A. z  e.  y  ( X  \  z )  e.  _V )
131 dfiin2g 4066 . . . . . . . . . . 11  |-  ( A. z  e.  y  ( X  \  z )  e. 
_V  ->  |^|_ z  e.  y  ( X  \  z
)  =  |^| { x  |  E. z  e.  y  x  =  ( X 
\  z ) } )
132130, 131syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  |^|_ z  e.  y  ( X  \  z )  =  |^| { x  |  E. z  e.  y  x  =  ( X  \  z
) } )
133 eqid 2387 . . . . . . . . . . . 12  |-  ( z  e.  y  |->  ( X 
\  z ) )  =  ( z  e.  y  |->  ( X  \ 
z ) )
134133rnmpt 5056 . . . . . . . . . . 11  |-  ran  (
z  e.  y  |->  ( X  \  z ) )  =  { x  |  E. z  e.  y  x  =  ( X 
\  z ) }
135134inteqi 3996 . . . . . . . . . 10  |-  |^| ran  ( z  e.  y 
|->  ( X  \  z
) )  =  |^| { x  |  E. z  e.  y  x  =  ( X  \  z
) }
136132, 135syl6eqr 2437 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  |^|_ z  e.  y  ( X  \  z )  =  |^| ran  ( z  e.  y 
|->  ( X  \  z
) ) )
137126, 136eqtrd 2419 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  i^i  |^|_ z  e.  y  ( X  \  z
) )  =  |^| ran  ( z  e.  y 
|->  ( X  \  z
) ) )
13811ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  F  e.  ( Fil `  X
) )
139 elfpw 7343 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( ~P ( B  \  F )  i^i 
Fin )  <->  ( y  C_  ( B  \  F
)  /\  y  e.  Fin ) )
140139simplbi 447 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ~P ( B  \  F )  i^i 
Fin )  ->  y  C_  ( B  \  F
) )
141140ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  y  C_  ( B  \  F
) )
142141sselda 3291 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  z  e.  ( B 
\  F ) )
143142eldifbd 3276 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  -.  z  e.  F
)
1449ad3antrrr 711 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  F  e.  ( UFil `  X ) )
145141difss2d 3420 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  y  C_  B )
146145sselda 3291 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  z  e.  B )
147 elssuni 3985 . . . . . . . . . . . . . . 15  |-  ( z  e.  B  ->  z  C_ 
U. B )
148146, 147syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  z  C_  U. B )
14913ad3antrrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  X  =  U. B
)
150148, 149sseqtr4d 3328 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  z  C_  X )
151 ufilb 17859 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( UFil `  X )  /\  z  C_  X )  ->  ( -.  z  e.  F  <->  ( X  \  z )  e.  F ) )
152144, 150, 151syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  ( -.  z  e.  F  <->  ( X  \ 
z )  e.  F
) )
153143, 152mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  ( X  \  z
)  e.  F )
154153, 133fmptd 5832 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  (
z  e.  y  |->  ( X  \  z ) ) : y --> F )
155 frn 5537 . . . . . . . . . 10  |-  ( ( z  e.  y  |->  ( X  \  z ) ) : y --> F  ->  ran  ( z  e.  y  |->  ( X 
\  z ) ) 
C_  F )
156154, 155syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ran  ( z  e.  y 
|->  ( X  \  z
) )  C_  F
)
157 fdm 5535 . . . . . . . . . . . 12  |-  ( ( z  e.  y  |->  ( X  \  z ) ) : y --> F  ->  dom  ( z  e.  y  |->  ( X 
\  z ) )  =  y )
158154, 157syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  dom  ( z  e.  y 
|->  ( X  \  z
) )  =  y )
159 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  y  =/=  (/) )
160158, 159eqnetrd 2568 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  dom  ( z  e.  y 
|->  ( X  \  z
) )  =/=  (/) )
161 dm0rn0 5026 . . . . . . . . . . 11  |-  ( dom  ( z  e.  y 
|->  ( X  \  z
) )  =  (/)  <->  ran  ( z  e.  y 
|->  ( X  \  z
) )  =  (/) )
162161necon3bii 2582 . . . . . . . . . 10  |-  ( dom  ( z  e.  y 
|->  ( X  \  z
) )  =/=  (/)  <->  ran  ( z  e.  y  |->  ( X 
\  z ) )  =/=  (/) )
163160, 162sylib 189 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ran  ( z  e.  y 
|->  ( X  \  z
) )  =/=  (/) )
164139simprbi 451 . . . . . . . . . . 11  |-  ( y  e.  ( ~P ( B  \  F )  i^i 
Fin )  ->  y  e.  Fin )
165164ad2antlr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  y  e.  Fin )
166 abrexfi 7342 . . . . . . . . . . 11  |-  ( y  e.  Fin  ->  { x  |  E. z  e.  y  x  =  ( X 
\  z ) }  e.  Fin )
167134, 166syl5eqel 2471 . . . . . . . . . 10  |-  ( y  e.  Fin  ->  ran  ( z  e.  y 
|->  ( X  \  z
) )  e.  Fin )
168165, 167syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ran  ( z  e.  y 
|->  ( X  \  z
) )  e.  Fin )
169 filintn0 17814 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  ( ran  ( z  e.  y 
|->  ( X  \  z
) )  C_  F  /\  ran  ( z  e.  y  |->  ( X  \ 
z ) )  =/=  (/)  /\  ran  ( z  e.  y  |->  ( X 
\  z ) )  e.  Fin ) )  ->  |^| ran  ( z  e.  y  |->  ( X 
\  z ) )  =/=  (/) )
170138, 156, 163, 168, 169syl13anc 1186 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  |^| ran  ( z  e.  y 
|->  ( X  \  z
) )  =/=  (/) )
171137, 170eqnetrd 2568 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  i^i  |^|_ z  e.  y  ( X  \  z
) )  =/=  (/) )
172 disj3 3615 . . . . . . . 8  |-  ( ( X  i^i  |^|_ z  e.  y  ( X  \  z ) )  =  (/) 
<->  X  =  ( X 
\  |^|_ z  e.  y  ( X  \  z
) ) )
173172necon3bii 2582 . . . . . . 7  |-  ( ( X  i^i  |^|_ z  e.  y  ( X  \  z ) )  =/=  (/) 
<->  X  =/=  ( X 
\  |^|_ z  e.  y  ( X  \  z
) ) )
174171, 173sylib 189 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  X  =/=  ( X  \  |^|_ z  e.  y  ( X  \  z ) ) )
175 iundif2 4099 . . . . . . 7  |-  U_ z  e.  y  ( X  \  ( X  \  z
) )  =  ( X  \  |^|_ z  e.  y  ( X  \  z ) )
176 dfss4 3518 . . . . . . . . . 10  |-  ( z 
C_  X  <->  ( X  \  ( X  \  z
) )  =  z )
177150, 176sylib 189 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  /\  y  =/=  (/) )  /\  z  e.  y )  ->  ( X  \  ( X  \  z ) )  =  z )
178177iuneq2dv 4056 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  U_ z  e.  y  ( X  \  ( X  \  z
) )  =  U_ z  e.  y  z
)
179 uniiun 4085 . . . . . . . 8  |-  U. y  =  U_ z  e.  y  z
180178, 179syl6eqr 2437 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  U_ z  e.  y  ( X  \  ( X  \  z
) )  =  U. y )
181175, 180syl5eqr 2433 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  ( X  \  |^|_ z  e.  y  ( X  \  z
) )  =  U. y )
182174, 181neeqtrd 2572 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) )  /\  y  =/=  (/) )  ->  X  =/=  U. y )
18311adantr 452 . . . . . 6  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  F  e.  ( Fil `  X
) )
184 filtop 17808 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
185 fileln0 17803 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  X  e.  F )  ->  X  =/=  (/) )
186184, 185mpdan 650 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  X  =/=  (/) )
187183, 186syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  X  =/=  (/) )
188122, 182, 187pm2.61ne 2625 . . . 4  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  X  =/=  U. y )
189188neneqd 2566 . . 3  |-  ( (
ph  /\  y  e.  ( ~P ( B  \  F )  i^i  Fin ) )  ->  -.  X  =  U. y
)
190189nrexdv 2752 . 2  |-  ( ph  ->  -.  E. y  e.  ( ~P ( B 
\  F )  i^i 
Fin ) X  = 
U. y )
191118, 190pm2.65i 167 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2373    =/= wne 2550   A.wral 2649   E.wrex 2650   _Vcvv 2899    \ cdif 3260    i^i cin 3262    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   {csn 3757   U.cuni 3957   |^|cint 3992   U_ciun 4035   |^|_ciin 4036    e. cmpt 4207   dom cdm 4818   ran crn 4819   -->wf 5390   ` cfv 5394  (class class class)co 6020   Fincfn 7045   ficfi 7350   topGenctg 13592  TopOnctopon 16882   TopBasesctb 16885   Filcfil 17798   UFilcufil 17852  UFLcufl 17853    fLim cflim 17887
This theorem is referenced by:  alexsub  17997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-fin 7049  df-fi 7351  df-topgen 13594  df-fbas 16623  df-top 16886  df-bases 16888  df-topon 16889  df-ntr 17007  df-nei 17085  df-fil 17799  df-ufil 17854  df-flim 17892
  Copyright terms: Public domain W3C validator