MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvga Unicode version

Theorem algcvga 13025
Description: The countdown function  C remains  0 after  N steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1  |-  F : S
--> S
algcvga.2  |-  R  =  seq  0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
algcvga.3  |-  C : S
--> NN0
algcvga.4  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
algcvga.5  |-  N  =  ( C `  A
)
Assertion
Ref Expression
algcvga  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Distinct variable groups:    z, C    z, F    z, R    z, S
Allowed substitution hints:    A( z)    K( z)    N( z)

Proof of Theorem algcvga
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3  |-  N  =  ( C `  A
)
2 algcvga.3 . . . 4  |-  C : S
--> NN0
32ffvelrni 5828 . . 3  |-  ( A  e.  S  ->  ( C `  A )  e.  NN0 )
41, 3syl5eqel 2488 . 2  |-  ( A  e.  S  ->  N  e.  NN0 )
5 nn0z 10260 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ZZ )
6 eluz1 10448 . . . . 5  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  <->  ( K  e.  ZZ  /\  N  <_  K ) ) )
7 fveq2 5687 . . . . . . . . . 10  |-  ( m  =  N  ->  ( R `  m )  =  ( R `  N ) )
87fveq2d 5691 . . . . . . . . 9  |-  ( m  =  N  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  N )
) )
98eqeq1d 2412 . . . . . . . 8  |-  ( m  =  N  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  N ) )  =  0 ) )
109imbi2d 308 . . . . . . 7  |-  ( m  =  N  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  N )
)  =  0 ) ) )
11 fveq2 5687 . . . . . . . . . 10  |-  ( m  =  k  ->  ( R `  m )  =  ( R `  k ) )
1211fveq2d 5691 . . . . . . . . 9  |-  ( m  =  k  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  k )
) )
1312eqeq1d 2412 . . . . . . . 8  |-  ( m  =  k  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  k ) )  =  0 ) )
1413imbi2d 308 . . . . . . 7  |-  ( m  =  k  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 ) ) )
15 fveq2 5687 . . . . . . . . . 10  |-  ( m  =  ( k  +  1 )  ->  ( R `  m )  =  ( R `  ( k  +  1 ) ) )
1615fveq2d 5691 . . . . . . . . 9  |-  ( m  =  ( k  +  1 )  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  ( k  +  1 ) ) ) )
1716eqeq1d 2412 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
1817imbi2d 308 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
19 fveq2 5687 . . . . . . . . . 10  |-  ( m  =  K  ->  ( R `  m )  =  ( R `  K ) )
2019fveq2d 5691 . . . . . . . . 9  |-  ( m  =  K  ->  ( C `  ( R `  m ) )  =  ( C `  ( R `  K )
) )
2120eqeq1d 2412 . . . . . . . 8  |-  ( m  =  K  ->  (
( C `  ( R `  m )
)  =  0  <->  ( C `  ( R `  K ) )  =  0 ) )
2221imbi2d 308 . . . . . . 7  |-  ( m  =  K  ->  (
( A  e.  S  ->  ( C `  ( R `  m )
)  =  0 )  <-> 
( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
23 algcvga.1 . . . . . . . . 9  |-  F : S
--> S
24 algcvga.2 . . . . . . . . 9  |-  R  =  seq  0 ( ( F  o.  1st ) ,  ( NN0  X.  { A } ) )
25 algcvga.4 . . . . . . . . 9  |-  ( z  e.  S  ->  (
( C `  ( F `  z )
)  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) ) )
2623, 24, 2, 25, 1algcvg 13022 . . . . . . . 8  |-  ( A  e.  S  ->  ( C `  ( R `  N ) )  =  0 )
2726a1i 11 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( A  e.  S  ->  ( C `  ( R `
 N ) )  =  0 ) )
28 nn0ge0 10203 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  0  <_  N )
2928adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  0  <_  N )
30 nn0re 10186 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  N  e.  RR )
31 zre 10242 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  k  e.  RR )
32 0re 9047 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
33 letr 9123 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  N  e.  RR  /\  k  e.  RR )  ->  (
( 0  <_  N  /\  N  <_  k )  ->  0  <_  k
) )
3432, 33mp3an1 1266 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  RR  /\  k  e.  RR )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3530, 31, 34syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( ( 0  <_  N  /\  N  <_  k
)  ->  0  <_  k ) )
3629, 35mpand 657 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  0  <_  k )
)
37 elnn0z 10250 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
3837simplbi2 609 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ZZ  ->  (
0  <_  k  ->  k  e.  NN0 ) )
3938adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( 0  <_  k  ->  k  e.  NN0 )
)
4036, 39syld 42 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
414, 40sylan 458 . . . . . . . . . . . . 13  |-  ( ( A  e.  S  /\  k  e.  ZZ )  ->  ( N  <_  k  ->  k  e.  NN0 )
)
4241impr 603 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  ( k  e.  ZZ  /\  N  <_  k )
)  ->  k  e.  NN0 )
4342expcom 425 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  N  <_  k )  -> 
( A  e.  S  ->  k  e.  NN0 )
)
44433adant1 975 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  k  e.  NN0 ) )
4544ancld 537 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( A  e.  S  /\  k  e.  NN0 ) ) )
46 nn0uz 10476 . . . . . . . . . . . . 13  |-  NN0  =  ( ZZ>= `  0 )
47 0z 10249 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
4847a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  0  e.  ZZ )
49 id 20 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  A  e.  S )
5023a1i 11 . . . . . . . . . . . . 13  |-  ( A  e.  S  ->  F : S --> S )
5146, 24, 48, 49, 50algrf 13019 . . . . . . . . . . . 12  |-  ( A  e.  S  ->  R : NN0 --> S )
5251ffvelrnda 5829 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  k
)  e.  S )
53 fveq2 5687 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( R `  k )  ->  ( F `  z )  =  ( F `  ( R `  k ) ) )
5453fveq2d 5691 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  ( F `  z ) )  =  ( C `  ( F `  ( R `  k ) ) ) )
5554neeq1d 2580 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  =/=  0  <->  ( C `  ( F `  ( R `  k
) ) )  =/=  0 ) )
56 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( z  =  ( R `  k )  ->  ( C `  z )  =  ( C `  ( R `  k ) ) )
5754, 56breq12d 4185 . . . . . . . . . . . . . 14  |-  ( z  =  ( R `  k )  ->  (
( C `  ( F `  z )
)  <  ( C `  z )  <->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) )
5855, 57imbi12d 312 . . . . . . . . . . . . 13  |-  ( z  =  ( R `  k )  ->  (
( ( C `  ( F `  z ) )  =/=  0  -> 
( C `  ( F `  z )
)  <  ( C `  z ) )  <->  ( ( C `  ( F `  ( R `  k
) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k )
) )  <  ( C `  ( R `  k ) ) ) ) )
5958, 25vtoclga 2977 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( F `  ( R `  k ) ) )  =/=  0  ->  ( C `  ( F `  ( R `  k
) ) )  < 
( C `  ( R `  k )
) ) )
6023, 2algcvgb 13024 . . . . . . . . . . . . 13  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  <->  ( (
( C `  ( R `  k )
)  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) ) )
61 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ( C `  ( R `  k ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  /\  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )  ->  ( ( C `
 ( R `  k ) )  =  0  ->  ( C `  ( F `  ( R `  k )
) )  =  0 ) )
6260, 61syl6bi 220 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  S  ->  (
( ( C `  ( F `  ( R `
 k ) ) )  =/=  0  -> 
( C `  ( F `  ( R `  k ) ) )  <  ( C `  ( R `  k ) ) )  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) ) )
6359, 62mpd 15 . . . . . . . . . . 11  |-  ( ( R `  k )  e.  S  ->  (
( C `  ( R `  k )
)  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
6452, 63syl 16 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( F `  ( R `  k ) ) )  =  0 ) )
6546, 24, 48, 49, 50algrp1 13020 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( R `  (
k  +  1 ) )  =  ( F `
 ( R `  k ) ) )
6665fveq2d 5691 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  ( C `
 ( F `  ( R `  k ) ) ) )
6766eqeq1d 2412 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  ( k  +  1 ) ) )  =  0  <->  ( C `  ( F `  ( R `  k
) ) )  =  0 ) )
6864, 67sylibrd 226 . . . . . . . . 9  |-  ( ( A  e.  S  /\  k  e.  NN0 )  -> 
( ( C `  ( R `  k ) )  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) )
6945, 68syl6 31 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  ( A  e.  S  ->  ( ( C `  ( R `  k )
)  =  0  -> 
( C `  ( R `  ( k  +  1 ) ) )  =  0 ) ) )
7069a2d 24 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ  /\  N  <_  k )  ->  (
( A  e.  S  ->  ( C `  ( R `  k )
)  =  0 )  ->  ( A  e.  S  ->  ( C `  ( R `  (
k  +  1 ) ) )  =  0 ) ) )
7110, 14, 18, 22, 27, 70uzind 10317 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) )
72713expib 1156 . . . . 5  |-  ( N  e.  ZZ  ->  (
( K  e.  ZZ  /\  N  <_  K )  ->  ( A  e.  S  ->  ( C `  ( R `  K )
)  =  0 ) ) )
736, 72sylbid 207 . . . 4  |-  ( N  e.  ZZ  ->  ( K  e.  ( ZZ>= `  N )  ->  ( A  e.  S  ->  ( C `  ( R `
 K ) )  =  0 ) ) )
745, 73syl 16 . . 3  |-  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N
)  ->  ( A  e.  S  ->  ( C `
 ( R `  K ) )  =  0 ) ) )
7574com3r 75 . 2  |-  ( A  e.  S  ->  ( N  e.  NN0  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) ) )
764, 75mpd 15 1  |-  ( A  e.  S  ->  ( K  e.  ( ZZ>= `  N )  ->  ( C `  ( R `  K ) )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   {csn 3774   class class class wbr 4172    X. cxp 4835    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040   1stc1st 6306   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    < clt 9076    <_ cle 9077   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444    seq cseq 11278
This theorem is referenced by:  algfx  13026  eucalgcvga  13032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-seq 11279
  Copyright terms: Public domain W3C validator