MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algr0 Unicode version

Theorem algr0 12758
Description: The value of the algorithm iterator  R at  0 is the initial state  A. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq  M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
algrf.3  |-  ( ph  ->  M  e.  ZZ )
algrf.4  |-  ( ph  ->  A  e.  S )
Assertion
Ref Expression
algr0  |-  ( ph  ->  ( R `  M
)  =  A )

Proof of Theorem algr0
StepHypRef Expression
1 algrf.2 . . 3  |-  R  =  seq  M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) )
21fveq1i 5542 . 2  |-  ( R `
 M )  =  (  seq  M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )
3 algrf.3 . . . 4  |-  ( ph  ->  M  e.  ZZ )
4 seq1 11075 . . . 4  |-  ( M  e.  ZZ  ->  (  seq  M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  ( ( Z  X.  { A } ) `  M
) )
53, 4syl 15 . . 3  |-  ( ph  ->  (  seq  M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  ( ( Z  X.  { A }
) `  M )
)
6 algrf.4 . . . 4  |-  ( ph  ->  A  e.  S )
7 uzid 10258 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
83, 7syl 15 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
9 algrf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
108, 9syl6eleqr 2387 . . . 4  |-  ( ph  ->  M  e.  Z )
11 fvconst2g 5743 . . . 4  |-  ( ( A  e.  S  /\  M  e.  Z )  ->  ( ( Z  X.  { A } ) `  M )  =  A )
126, 10, 11syl2anc 642 . . 3  |-  ( ph  ->  ( ( Z  X.  { A } ) `  M )  =  A )
135, 12eqtrd 2328 . 2  |-  ( ph  ->  (  seq  M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ) `  M )  =  A )
142, 13syl5eq 2340 1  |-  ( ph  ->  ( R `  M
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   {csn 3653    X. cxp 4703    o. ccom 4709   ` cfv 5271   1stc1st 6136   ZZcz 10040   ZZ>=cuz 10246    seq cseq 11062
This theorem is referenced by:  algcvg  12762  eucalg  12773  ovolicc2lem4  18895  bfplem1  26649
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-seq 11063
  Copyright terms: Public domain W3C validator