MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algsca Unicode version

Theorem algsca 13328
Description: The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
Hypothesis
Ref Expression
algpart.a  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } )
Assertion
Ref Expression
algsca  |-  ( S  e.  V  ->  S  =  (Scalar `  A )
)

Proof of Theorem algsca
StepHypRef Expression
1 algpart.a . . 3  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } )
21algstr 13324 . 2  |-  A Struct  <. 1 ,  6 >.
3 scaid 13316 . 2  |- Scalar  = Slot  (Scalar ` 
ndx )
4 snsspr1 3801 . . 3  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. }
5 ssun2 3373 . . . 4  |-  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. } )
65, 1sseqtr4i 3245 . . 3  |-  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  .x.  >. }  C_  A
74, 6sstri 3222 . 2  |-  { <. (Scalar `  ndx ) ,  S >. }  C_  A
82, 3, 7strfv 13227 1  |-  ( S  e.  V  ->  S  =  (Scalar `  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1633    e. wcel 1701    u. cun 3184   {csn 3674   {cpr 3675   {ctp 3676   <.cop 3677   ` cfv 5292   1c1 8783   6c6 9844   ndxcnx 13192   Basecbs 13195   +g cplusg 13255   .rcmulr 13256  Scalarcsca 13258   .scvsca 13259
This theorem is referenced by:  mendsca  26645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-3 9850  df-4 9851  df-5 9852  df-6 9853  df-n0 10013  df-z 10072  df-uz 10278  df-fz 10830  df-struct 13197  df-ndx 13198  df-slot 13199  df-base 13200  df-plusg 13268  df-mulr 13269  df-sca 13271  df-vsca 13272
  Copyright terms: Public domain W3C validator