MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alinexa Unicode version

Theorem alinexa 1568
Description: A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
alinexa  |-  ( A. x ( ph  ->  -. 
ps )  <->  -.  E. x
( ph  /\  ps )
)

Proof of Theorem alinexa
StepHypRef Expression
1 imnan 411 . . 3  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
21albii 1556 . 2  |-  ( A. x ( ph  ->  -. 
ps )  <->  A. x  -.  ( ph  /\  ps ) )
3 alnex 1533 . 2  |-  ( A. x  -.  ( ph  /\  ps )  <->  -.  E. x
( ph  /\  ps )
)
42, 3bitri 240 1  |-  ( A. x ( ph  ->  -. 
ps )  <->  -.  E. x
( ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530   E.wex 1531
This theorem is referenced by:  equs3  1634  ralnex  2566  zfregs2  7431  ac6n  8128  nnunb  9977  alexsubALTlem3  17759  nmobndseqi  21373  zfregs2VD  28933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532
  Copyright terms: Public domain W3C validator