MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrot4 Structured version   Unicode version

Theorem alrot4 1755
Description: Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Assertion
Ref Expression
alrot4  |-  ( A. x A. y A. z A. w ph  <->  A. z A. w A. x A. y ph )

Proof of Theorem alrot4
StepHypRef Expression
1 alrot3 1754 . . 3  |-  ( A. y A. z A. w ph 
<-> 
A. z A. w A. y ph )
21albii 1576 . 2  |-  ( A. x A. y A. z A. w ph  <->  A. x A. z A. w A. y ph )
3 alrot3 1754 . 2  |-  ( A. x A. z A. w A. y ph  <->  A. z A. w A. x A. y ph )
42, 3bitri 242 1  |-  ( A. x A. y A. z A. w ph  <->  A. z A. w A. x A. y ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 178   A.wal 1550
This theorem is referenced by:  2mo  2361  fun11  5519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-7 1750
This theorem depends on definitions:  df-bi 179
  Copyright terms: Public domain W3C validator