Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopth1 Unicode version

Theorem altopth1 25058
Description: Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopth1  |-  ( A  e.  V  ->  ( << A ,  B >>  = 
<< C ,  D >>  ->  A  =  C )
)

Proof of Theorem altopth1
StepHypRef Expression
1 altopthsn 25054 . 2  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
2 sneqrg 3861 . . 3  |-  ( A  e.  V  ->  ( { A }  =  { C }  ->  A  =  C ) )
32adantrd 454 . 2  |-  ( A  e.  V  ->  (
( { A }  =  { C }  /\  { B }  =  { D } )  ->  A  =  C ) )
41, 3syl5bi 208 1  |-  ( A  e.  V  ->  ( << A ,  B >>  = 
<< C ,  D >>  ->  A  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   {csn 3716   <<caltop 25049
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-sn 3722  df-pr 3723  df-altop 25051
  Copyright terms: Public domain W3C validator