Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthb Unicode version

Theorem altopthb 24576
Description: Alternate ordered pair theorem with different sethood requirements. See altopth 24575 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.)
Hypotheses
Ref Expression
altopthb.1  |-  A  e. 
_V
altopthb.2  |-  D  e. 
_V
Assertion
Ref Expression
altopthb  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem altopthb
StepHypRef Expression
1 altopthb.1 . 2  |-  A  e. 
_V
2 altopthb.2 . 2  |-  D  e. 
_V
3 altopthbg 24574 . 2  |-  ( ( A  e.  _V  /\  D  e.  _V )  ->  ( << A ,  B >>  =  << C ,  D >>  <->  ( A  =  C  /\  B  =  D )
) )
41, 2, 3mp2an 653 1  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   <<caltop 24562
This theorem is referenced by:  altopthc  24577
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-sn 3659  df-pr 3660  df-altop 24564
  Copyright terms: Public domain W3C validator