Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthbg Structured version   Unicode version

Theorem altopthbg 25818
Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.)
Assertion
Ref Expression
altopthbg  |-  ( ( A  e.  V  /\  D  e.  W )  ->  ( << A ,  B >>  =  << C ,  D >>  <->  ( A  =  C  /\  B  =  D )
) )

Proof of Theorem altopthbg
StepHypRef Expression
1 altopthsn 25811 . 2  |-  ( << A ,  B >>  =  << C ,  D >>  <->  ( { A }  =  { C }  /\  { B }  =  { D } ) )
2 sneqbg 3971 . . 3  |-  ( A  e.  V  ->  ( { A }  =  { C }  <->  A  =  C
) )
3 sneqbg 3971 . . . 4  |-  ( D  e.  W  ->  ( { D }  =  { B }  <->  D  =  B
) )
4 eqcom 2440 . . . 4  |-  ( { B }  =  { D }  <->  { D }  =  { B } )
5 eqcom 2440 . . . 4  |-  ( B  =  D  <->  D  =  B )
63, 4, 53bitr4g 281 . . 3  |-  ( D  e.  W  ->  ( { B }  =  { D }  <->  B  =  D
) )
72, 6bi2anan9 845 . 2  |-  ( ( A  e.  V  /\  D  e.  W )  ->  ( ( { A }  =  { C }  /\  { B }  =  { D } )  <-> 
( A  =  C  /\  B  =  D ) ) )
81, 7syl5bb 250 1  |-  ( ( A  e.  V  /\  D  e.  W )  ->  ( << A ,  B >>  =  << C ,  D >>  <->  ( A  =  C  /\  B  =  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   {csn 3816   <<caltop 25806
This theorem is referenced by:  altopthb  25820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-sn 3822  df-pr 3823  df-altop 25808
  Copyright terms: Public domain W3C validator