Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopthbg Structured version   Unicode version

Theorem altopthbg 25818
 Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.)
Assertion
Ref Expression
altopthbg

Proof of Theorem altopthbg
StepHypRef Expression
1 altopthsn 25811 . 2
2 sneqbg 3971 . . 3
3 sneqbg 3971 . . . 4
4 eqcom 2440 . . . 4
5 eqcom 2440 . . . 4
63, 4, 53bitr4g 281 . . 3
72, 6bi2anan9 845 . 2
81, 7syl5bb 250 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wceq 1653   wcel 1726  csn 3816  caltop 25806 This theorem is referenced by:  altopthb  25820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-sn 3822  df-pr 3823  df-altop 25808
 Copyright terms: Public domain W3C validator